[1]
H. E. Friedrich and S. Ehrenberger, The IMA Study on the Life Cycle Assessment (LCA) of Magnesium, TMS 2014, Magnesium Technology 2014, p.13.
DOI: 10.1002/9781118888179.ch4
Google Scholar
[2]
C. Hennrich, Magnesium in civil aviation cabin - Prospects & Challenges, 25. Magnesium Abnehmer und Automotive Seminar 2017, Aalen.
Google Scholar
[3]
Information on: http: /www. airbus. com/content/dam/corporate-topics/publications/backgrounders/Airbus_ Global_ Market_ Forecast_ 2017-2036_ Growing_ Horizons_ full_ book. pdf.
Google Scholar
[4]
Information on http: /www. atag. org/facts-and-figures. html.
Google Scholar
[5]
B. Gwynne and P. Lyon, Magnesium Alloys in Aerospace Applications, Past Concerns, Current Solutions, Triennial International Aircraft Fire & Cabin Safety Research Conference, Atlantic City, (2007).
Google Scholar
[6]
Information on http: /standards. sae. org/wip/as8049c.
Google Scholar
[7]
S. Gneiger, R. Gradinger, C. Simson, Y. M. Kim, and B. S. Sun, Investigations on microstructure and mechanical properties of non-flammable Mg-Al-Zn-Ca-Y extruded alloys, 7th EUCASS, Milan, (2017).
DOI: 10.1007/978-3-319-72332-7_17
Google Scholar
[8]
B. -S. You, W. -W. Park and I. -S. Chung, Effect of calcium additions on the oxidation behavior in magnesium alloys, Scr. Mater., vol. 42, no. 11 (2000), p.1089.
Google Scholar
[9]
Y. Kim, H. Kim, B. You, and C. Yim, Patent CA2781995 A1 (2010).
Google Scholar
[10]
Information on https: /ec. europa. eu/clima/policies/f-gas_en.
Google Scholar
[11]
A. Dziubinska, A. Gontarz, M, Dziubinski and M. Barszcz, The forming of magnesium alloy forgings for aircraft and automotive applications, Adv. Sci. Technol. Res. J. Vol. 10 (2016), p.158.
DOI: 10.12913/22998624/64003
Google Scholar
[12]
Y.M. Kim, B.S. You, M-S. Shim and N.J. Kim, Mechanical Properties and High-Temperature Oxidation Behavior of Mg-Al-Zn-Ca-Y Magnesium Alloys, TMS 2012, Magnesium Technology 2012, p.217.
DOI: 10.1002/9781118359228.ch41
Google Scholar
[13]
M. Madaj, M. Greger and V. Karas, Magnesium-alloy die forgings for automotive applications, Materials and Technology MTAEC9 49 (2015) 2, p.267.
DOI: 10.17222/mit.2013.174
Google Scholar
[14]
M. Graf, M. Ullmann and R. Kawalla, Property-oriented production of forged magnesium components, Mater. Today-Proc. 2S (2015), p. S76.
DOI: 10.1016/j.matpr.2015.05.022
Google Scholar
[15]
ASM International: Metals Handbook 9. Edition, Vol 14: Forming and Forging, (1988).
Google Scholar
[16]
S.E. Harandi, M.H. Idris and H. Jafari, Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy, Mater. Design 32 (2011), p.2596.
DOI: 10.1016/j.matdes.2011.01.042
Google Scholar
[17]
K. Suresh, K.P. Rao, Y.V.R.K. Prasad, N. Hort and K.U. Kainer, Study of hot forging behavior of as-cast Mg-3Al-1Zn-2Ca alloy towards optimization of its hot workability, Mater. Design 57 (2014), p.697.
DOI: 10.1016/j.matdes.2014.01.032
Google Scholar
[18]
B. -H. Choi, B. -S. You, W. -W. Park, Y. -B. Huang and I. -M. Park, Effect of Ca addition on the oxidation resistance of AZ91 magnesium alloys at elevated temperatures, Met. Mater. Int., vol. 9, no. 4 (2003), p.395.
DOI: 10.1007/bf03027194
Google Scholar
[19]
Y. -I. Choi, K. Kuroda, and M. Okido, Temperature-dependent corrosion behaviour of flameresistant, Ca-containing AZX911 and AMX602 Mg alloys, Corros. Sci., vol. 103 (2016), p.181.
DOI: 10.1016/j.corsci.2015.11.017
Google Scholar
[20]
P. Li, B. Tang, and E. G. Kandalova, Microstructure and properties of AZ91D alloy with Ca additions, Mater. Lett., vol. 59, no. 6 (2005), p.671.
DOI: 10.1016/j.matlet.2004.11.006
Google Scholar