[1]
J. Gessman, B. Jettkant, T.A. Schildhauer, D. Seybold, Mechanical stress on tensioned wires at direct and indirect loading: A biomechanical study on the Ilizarov external fixator, Injury, Volume 42, Issue 10 (2011) 1107-1111.
DOI: 10.1016/j.injury.2011.02.001
Google Scholar
[2]
S. Zahaf, S. Kebdani, M. Dahmane, Z. Azari, The Biomechanical comparison between two models of the lumbar intersomitic fusion cage analyzed by the finite element method, Sci., Issue 10 (2017) 40 - 58.
DOI: 10.4028/www.scientific.net/jbbbe.32.40
Google Scholar
[3]
C. Migliaresi, F. Nicoli, S. Rossi, A. Pegoretti, Novel use of carbon composites for the fabrication of external fixators, Composites science and technology, Sci., Vol.: 64, Issue 6 (2004) 873 - 883.
DOI: 10.1016/j.compscitech.2003.09.003
Google Scholar
[4]
D. Kytyr, T. Doktor, O. Jirousek, T. Fila, P. Koudelka, P. Zlámal, Deformation behavior of a natural shaped bone scaffold. , Mater. Tehnol., 50 (2016) 3, doi: 10. 17222/mit. 2014. 190.
DOI: 10.17222/mit.2014.190
Google Scholar
[5]
D. P. Jevremovic, T. M. Puskar, I. Budak, D. Vukelic, V. Kojic, D. Eggbeer, R. J. Williams, An RE/RM approach to the design and manufacture of removable partial dentures with a biocompatibility analysis of the F75 Co-Cr SLM alloy., Mater. Tehnol., 46 (2012).
DOI: 10.2298/jsc100406014j
Google Scholar
[6]
A. Kursun, E. Topal, Investigation of hole effects on the critical buckling load of laminated composite plates., Mater. Tehnol., 50 (2016) 1, doi: 10. 17222/mit. 2014. 164.
DOI: 10.17222/mit.2014.164
Google Scholar
[7]
K. Agrawal, B. Singh, M. Garg, V. Khatkar, S. Batra, V. K. Sharma, Cosmetic arm lengthening with monorail fixator. SD, 18 (2015) 170-174.
DOI: 10.1016/j.cjtee.2015.10.001
Google Scholar
[8]
L. Pleva, External Fixation in Traumatology (Ostrava, Czech Republic, 1992, written in Czech language).
Google Scholar
[9]
D. Seligson, C. Maufrey, C. S. Roberts et al, External Fixation in Orthopedic Traumatology (Springer-Verlag London Limited, 2012).
Google Scholar
[10]
L. N. Solomin et al, The Basic Principles of External Skeletal Fixation Using the Ilizarov and Other Devices, 2nd edition, (Springer-Verlag, Italy, 2012).
DOI: 10.1007/978-88-470-2619-3
Google Scholar
[11]
L.A. Pruitt, A.M. Chakravartula, Mechanics of Biomaterial s- Fundamental Principles for Desing, (University of California, USA, 2011).
Google Scholar
[12]
Fu T, Zhao J-L, Xu K-W. The designable elastic modulus of 3-D fabric reinforced biocomposites. Mater Lett 2007; 61(2): 330–3.
DOI: 10.1016/j.matlet.2006.04.057
Google Scholar
[13]
Evans SL, Gregson PJ. Composite technology in load-bearing orthopedic implants. Biomaterials 1998; 19(15): 1329–42.
DOI: 10.1016/s0142-9612(97)00217-2
Google Scholar
[14]
Wintermantel E et al. Composites for biomedical applications. In: Encyclopedia of materials: science and technology. Oxford: Elsevier; 2001. p.1371–6.
Google Scholar
[15]
Ramakrishna S et al. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 2001; 61(9): 1189–224.
Google Scholar
[16]
M. -S. Scholz, J.P. Blanchfield, L.D. Bloom, B.H. Coburn, M. Elkington, J.D. Fuller, M.E. Gilbert, The use of composite materials in modern orthopedic medicine and prosthetic devices. Advanced Composites Centre for Innovation and Science (ACCIS), University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, UK.
DOI: 10.1016/j.compscitech.2011.08.017
Google Scholar
[17]
M. Elmedin, A. Vahid, P. Nedim, R. Nedžad, Finite element analysis and experimental testing of the stiffness of the Sarafix external fixator, Procedia Engineering, 100 (2015) 3, 1598-1607.
DOI: 10.1016/j.proeng.2015.01.533
Google Scholar