Mechanical and Microstructural Evolutions of the Laser Deposited Titanium Layers under Various Shielding Atmospheres

Article Preview

Abstract:

Direct laser melting process is a kind of prototyping process whereby a 3-D part is built layer-wise by melting the metal powder with laser scanning. The properties of laser melted layer are found to be strongly dependent upon the types of shielding gas used. In this study, the effects of shielding gases on the mechanical and microstructural properties of the deposited titanium layers have been investigated. The laser remelting process has also been implemented at various shielding atmospheres to investigate the changes in surface roughness and hardness of deposited layers. The characterization of laser processing parameters, such as laser power, scan rate, gas flow rate, powder layer thickness, beam spot size and hatch distance, is proved to be useful in controlling the mechanical and microstructural properties of the deposited layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-63

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. Jang, B. D. Joo, S. M. Mun, C. J. Van Tyne, Y. H. Moon, Application of a direct laser melting process for fabricating a micropattern in bipolar plates used in direct methanol fuel cells, J. Eng. Manuf. 225 (2011) 1784-1791.

DOI: 10.1177/0954405410395859

Google Scholar

[2] M. Van Stappen, K. De Bruyn, C. Quaeyhaegens, L. Stals, V. Poulek, Deposition and properties of thick corrosion and wear-resistant Ti2N coatings, Surf. Coat. Technol. 74 (1995) 143-146.

DOI: 10.1016/0257-8972(95)08225-5

Google Scholar

[3] H. Li, Z. Cui, Z. Li, S. Zhu, X. Yang, Effect of gas nitriding treatment on cavitation erosion behavior of commercially pure Ti and Ti− 6Al− 4V alloy, Surf. Coat. Technol. 221 (2013) 29-36.

DOI: 10.1016/j.surfcoat.2013.01.023

Google Scholar

[4] A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods, Surf. Coat. Technol. 200 (2005) 2192-2207.

DOI: 10.1016/j.surfcoat.2004.07.115

Google Scholar

[5] J. Kaspar, J. Bretschneider, S. Jacob, S. Bonß, B. Winderlich, B. Brenner, Microstructure, hardness and cavitation erosion behaviour of Ti–6Al–4V laser nitrided under different gas atmospheres, Surf. Eng. 23 (2007) 99-106.

DOI: 10.1179/174329407x169430

Google Scholar

[6] S. Mridha, T. N. Baker, Effects of nitrogen gas flow rates on the microstructure and properties of laser-nitrided IMI318 titanium alloy (Ti–4V–6Al), J. Mater. Process. Technol. 77 (1998) 115-121.

DOI: 10.1016/s0924-0136(97)00408-1

Google Scholar

[7] H. C. Man, N. Q. Zhao, Z. D. Cui, Surface morphology of a laser surface nitrided and etched Ti–6Al–4V alloy, Surf. Coat. Technol. 192 (2005) 341-346.

DOI: 10.1016/j.surfcoat.2004.07.076

Google Scholar

[8] J. H. Abboud, A. F. Fidel, K. Y. Benyounis, Surface nitriding of Ti–6Al–4V alloy with a high power CO2 laser, Opt. Laser. Technol. 40 (2008) 405-414.

DOI: 10.1016/j.optlastec.2007.07.005

Google Scholar

[9] l. Yadroitsev, l. Smurov, Surface morphology in selective laser melting of metal powders, Physics Procedia. 12 (2011) 264-270.

DOI: 10.1016/j.phpro.2011.03.034

Google Scholar

[10] K. Guan, Z. Wang, M. Gao, X. Li, X. Zeng, Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel, Mater. Des. 50 (2013) 581-586.

DOI: 10.1016/j.matdes.2013.03.056

Google Scholar

[11] W. Liu, J. N. Dupont, Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping, Scr. Mater. 48 (2003) 1337-1342.

DOI: 10.1016/s1359-6462(03)00020-4

Google Scholar