[1]
W. Fairhurst, K. Rohrig, High-silicon nodular irons, Foundry Trade Journal. 146 (1979) 657–681.
Google Scholar
[2]
R. Yamauchi, S. Ishizuka, N. Suzuki, Development of Vanadium-added Heat Resistant Cast Iron for Exhaust Manifold, SAE Technical Paper, (2010).
DOI: 10.4271/2010-32-0073
Google Scholar
[3]
M. Ekström, Oxidation and corrosion fatigue aspects of cast exhaust manifolds, Doctoral thesis, KTH Royal Institute of Technology, (2015).
Google Scholar
[4]
K. Papis, S. Tunzini, W. Menk, Cast iron alloys for exhaust applications, 10th International Symposium on the Science and Processing of Cast Iron, Mar Del Plata, Argentina. (2014).
Google Scholar
[5]
P. Bastid, P. Pilvin, C. Grente, E. Andrieu, Microstructural Evolution of Spheroidal Graphite Cast Iron at High Temperature: Consequences on Mechanical Behaviour, Adv. Mat. Res. 4–5 (1997) 139–146.
DOI: 10.4028/www.scientific.net/amr.4-5.139
Google Scholar
[6]
Y. Yamaguchi, S. Kiguchi, H. Sumimoto, D.K. Nakamura, Effect of graphite morphology on decarburized cast iron, Int. J. Cast. Metal Res. 16 (2003) 137–142.
DOI: 10.1080/13640461.2003.11819572
Google Scholar
[7]
L.L. Liu, Q.Q. Guo, Y. Niu, Transition Between Different Oxidation Modes of Binary Fe–Si Alloys at 600–800 °C in Pure O2, Oxid Met. 79 (2013) 201–224.
DOI: 10.1007/s11085-012-9318-2
Google Scholar
[8]
M. Ekström, P. Szakalos, S. Jonsson, Influence of Cr and Ni on High-Temperature Corrosion Behavior of Ferritic Ductile Cast Iron in Air and Exhaust Gases, Oxid Met. 80 (2013) 455–466.
DOI: 10.1007/s11085-013-9389-8
Google Scholar
[9]
F. Tholence, M. Norell, High-Temperature Corrosion of Cast Irons and Cast Steels in Dry Air, Materials Science Forum. 369–372 (2001) 197–204.
DOI: 10.4028/www.scientific.net/msf.369-372.197
Google Scholar
[10]
I. Svedung, N.-G. Vannerberg, The influence of silicon on the oxidation properties of iron, Corros. Sci. 14 (1974) 391–399.
DOI: 10.1016/s0010-938x(74)80032-6
Google Scholar
[11]
A. Atkinson, A theoretical analysis of the oxidation of Fe–Si alloys, Corros. Sci. 22 (1982) 87–102.
Google Scholar
[12]
J.B. Heywood, Internal combustion engine fundamentals, Mcgraw-hill New York, (1988).
Google Scholar
[13]
F. Tholence, M. Norell, High Temperature Corrosion of Cast Alloys in Exhaust Environments I-Ductile Cast Irons, Oxid Met. 69 (2008) 13–36.
DOI: 10.1007/s11085-007-9081-y
Google Scholar
[14]
M. Fukumoto, S. Maeda, S. Hayashi, T. Narita, Effect of Water Vapor on the Oxidation Behavior of Fe–1.5Si in Air at 1073 and 1273 K, Oxid Met. 55 (2001) 401–422.
Google Scholar
[15]
S. Parent-Simonin, C. Moreaux, J.C. Margerie, Influence of the Annealing Atmosphere on the Structure of Malleable Cast Irons, Rev. Metall. 74 (1977) 537–543.
DOI: 10.1051/metal/197774100537
Google Scholar
[16]
M. Ekström, S. Jonsson, High-Temperature Corrosion Fatigue of a Ferritic Ductile Cast Iron in Inert and Corrosive Environments at 700oC, 10th International Symposium on the Science and Processing of Cast Iron, Mar Del Plata, Argentina. (2014).
Google Scholar
[17]
X. Wu, G. Quan, R. MacNeil, Z. Zhang, X. Liu, C. Sloss, Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction, Metall. Mater. Trans. A. 46 (2015) 2530–2543.
DOI: 10.1007/s11661-015-2873-9
Google Scholar
[18]
V. Norman, P. Skoglund, D. Leidermark, J. Moverare, Damage Mechanisms in Silicon-Molybdenum Cast Irons subjected to Thermo-Mechanical Fatigue, Int. J. Fatigue. 99 (2017) 258–265.
DOI: 10.1016/j.ijfatigue.2017.01.014
Google Scholar
[19]
B.E. Deal, A.S. Grove, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36 (1965) 3770–3778.
Google Scholar
[20]
A. Atkinson, J.W. Gardner, The diffusion of Fe3+ in amorphous SiO2 and the protective properties of SiO2 layers, Corros. Sci. 21 (1981) 49–58.
DOI: 10.1016/0010-938x(81)90063-9
Google Scholar
[21]
C. Wagner, Reaktionstypen bei der Oxydation von Legierungen, Zeitschrift Für Elektrochemie, Berichte Der Bunsengesellschaft Für Physikalische Chemie. 63 (1959) 772–782.
DOI: 10.1002/bbpc.19590630713
Google Scholar