Improving the Efficiency of Perovskite Solar Cell through the Addition of Compact Layer under TiO2 Electron Transfer Material

Article Preview

Abstract:

In the fabrication of perovskite solar cells, the perovskite layer is typically deposited onto the TiO2 semiconductor layer. The TiO2 layer serves as an electron transport material (ETM). In order to form the perovskite layer firmly and evenly, a structured mesoporous (MS) TiO2 surface is required. A porous layer could also make the electrons move more quickly through the pores to reach the contact. However, the electron-hole recombination and electron trapping in the dead end pore are still occurred. One of the solutions to overcome this problem is to add a thin compact layer (CL)-TiO2 under MS-TiO2 layer. The CL-TiO2 is expected as to prevent recombination and attract electrons trapped in the MS-TiO2 layer. In this paper, we report the addition of a thin compact layer (CL)-TiO2 under MS-TiO2 layer in the fabrication of perovskite solar cells based on methyl ammonium lead iodide (CH3NH3PbI3). The compact layer TiO2 was grown under mesoporous TiO2 layer by dip-coating in TiCl4 solution. The time of the dip coating was varied to obtain an optimum efficiency improvement. The structure of the device is glass/FTO/CL-TiO2/MS-TiO2/ CH3NH3PbI3/Spiro-OMeTAD/Ag/FTO/glass. It was concluded that the addition of CL-TiO2 can improve the perovskite solar cells power conversion efficiencies. The best efficiency was obtained from the 15 minutes dip-coating, which corresponded to the thinnest CL-TiO2 out of all samples. The electrical characterization performed under irradiation with an intensity of 50 mW/cm2 at 25 °C generated an open circuit voltage of 0.28 V, a short circuit current density of 0.25 mA/cm2 and a power conversion efficiency of 0.60 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-224

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Tanabe, Dye-sensitized solar cell for energy harvesting applications, Fujikura Tech. Rev., (2013) 109-113.

Google Scholar

[2] D.W. Liu, I.C. Cheng, J.Z. Chen, H.W. Chen, K.C. Ho, and C.C. Chiang, Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes. Opt., Express 20 (2012) A168-A176.

DOI: 10.1364/oe.20.00a168

Google Scholar

[3] N.G. Park, Perovskite solar cells: an emerging photovoltaic technology, Mater. Today 18 (2015) 65-72.

Google Scholar

[4] P.P. Boix, K. Nonomura, N. Mathews, and S.G. Mhaisalkar, Current progress and future perspectives for organic/inorganic perovskite solar cells, Mater. Today 17 (2014) 16-23.

DOI: 10.1016/j.mattod.2013.12.002

Google Scholar

[5] S. Casaluci, L. Cinà, A Pockett, P.S. Kubiak, R.G. Niemann, and A. Reale, A simple approach for the fabrication of perovskite solar cells in air, J. Pow. Sources 297 (2015) 504-510.

DOI: 10.1016/j.jpowsour.2015.08.010

Google Scholar

[6] P. Yadav, K. Pandey, P. Bhatt, D. Raval, B. Tripathi, and C.P. Kanth, Exploring the performance limiting parameters of perovskite solar cell through experimental analysis and device simulation, Sol. En. 122 (2015) 773-782.

DOI: 10.1016/j.solener.2015.09.046

Google Scholar

[7] G. Sfyri, C.V. Kumar, D. Raptis, V. Dracopoulos, and P. Lianos, Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules, Sol. En. Mater. and Sol. Cells 134 (2015) 60-63.

DOI: 10.1016/j.solmat.2014.11.034

Google Scholar

[8] J.S. Yeo, R. Kang, S. Lee, Y.J. Jeon, N. Myoung, C.L. Lee, Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer, Nano En. 12 (2015) 96-104.

DOI: 10.1016/j.nanoen.2014.12.022

Google Scholar

[9] S. Ameen, M.A. Rub, S.A. Kosa, K.A. Alamry, M.S. Akhtar, H.S. Shin, Perovskite solar cells: influence of hole transporting materials on power conversion efficiency, Chemsuschem 9 (2016) 10-27.

DOI: 10.1002/cssc.201501228

Google Scholar

[10] L.C. Chen, C.C. Chen, J.C. Chen, and C.G. Wu, Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process, Sol. En. 122 (2015) 1047-1051.

DOI: 10.1016/j.solener.2015.10.019

Google Scholar

[11] M.C. Tathavadekar, S.A. Agarkar, O.S. Game, U.P. Bansode, S.A. Kulkarni, and S.G. Mhaisalkar, Enhancing efficiency of perovskite solar cell via surface microstructuring: superior grain growth and light harvesting effect, Sol. En. 112 (2015).

DOI: 10.1016/j.solener.2014.11.016

Google Scholar

[12] T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale, and Y.M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance, J. Mater. Chem. A 3 (2015) 8943-8969.

DOI: 10.1039/c4ta05226a

Google Scholar

[13] E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, and Y. Rosenwaks, Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor), Nano Let. 14 (2014).

DOI: 10.1021/nl404454h

Google Scholar

[14] X. Wang, Y. Fang, L.He, Q. Wang, T. Wu, Influence of compact TiO2 layer on the photovoltaic characteristics of the organometalhalide perovskite-based solar cells, Mater. Sci. in Semiconductor Processing 27 (2014) 569–576.

DOI: 10.1016/j.mssp.2014.07.039

Google Scholar

[15] T.S. Su, T.Y. Hsieh, C.Y. Hong, and T.C. Wei, Electrodeposited ultrathin TiO2 blocking Layers for efficient perovskite solar cells, Sci. Rep. 16098 (2015) 1-8.

DOI: 10.1038/srep16098

Google Scholar

[16] S.M. Sze and K.N. Kwok, Physics of Semiconductor Devices, third ed., Wiley-Interscience, New Jersey, (2007).

Google Scholar