Influence of Ambient Pressure on Cell Structure Evolution in Liquid Aluminum Foam

Article Preview

Abstract:

Foaming of liquid aluminum was applied under different ambient pressure, from vacuum pressure to overpressure. The expansion rate of the liquid foam was recorded and the cell structure of foam specimens was characterized. It is found that varying ambient pressure shows effective influence on the thermal decomposition of TiH2 inside liquid aluminum. Cell size distribution and cell wall thickness is also greatly influenced by ambient pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-111

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Miyoshi, M. Itoh, S. Akiyama and A. Kitahara, ALPORAS Aluminum Foam: Production Process, Properties, and Applications, Adv. Eng. Mater. 2(4),2000:179–183.

DOI: 10.1002/(sici)1527-2648(200004)2:4<179::aid-adem179>3.0.co;2-g

Google Scholar

[2] F. Baumgartner, I. Duarte, J. Banhart, Industrialization of Powder Compact Foaming Process Adv. Eng. Mater. 2(4),2000:168-174.

DOI: 10.1002/(sici)1527-2648(200004)2:4<168::aid-adem168>3.0.co;2-o

Google Scholar

[3] S W Ip, S W Wang, J M Toguri, Aluminum Foam Stabilization by Solid Particles, Canadian Metallurgical Quarterly, 1(38)1999:81-92.

DOI: 10.1179/cmq.1999.38.1.81

Google Scholar

[4] J. Banhart, Manufacture, Characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46(6), 2001:559–632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[5] LP Lefebvre, J Banhart, D C. Dunand, Porous metals and metallic foams: current status and recent developments, Adv. Eng. Mater., 10(9)2008:775-787.

DOI: 10.1002/adem.200800241

Google Scholar

[6] W-Y. Jang, W-Y. Hsieh, C.-C. Miao, Y.-C. Yen, Microstructure and mechanical properties of ALPORAS closed-cell aluminium foam, Materials Characterization 107 ,2015: 228-238.

DOI: 10.1016/j.matchar.2015.07.012

Google Scholar

[7] R. Edwin Raj, B.S.S. Daniel Structural and compressive property correlation of closed-cell aluminum foam, Journal of Alloys and Compounds, 467(1–2), 2009: 550–556.

DOI: 10.1016/j.jallcom.2007.12.040

Google Scholar

[8] A. E. Simone and L. J. Gibson, Aluminum foams produced by liquid state processes, Acta mater. 46( 9)1998: 3109-3123.

DOI: 10.1016/s1359-6454(98)00017-2

Google Scholar

[9] M. Saadatfar , M. Mukherjee, M. Madadi, G.E. Schroder-Turk, F. Garcia-Moreno F.M. Schaller, S. Hutzler, A.P. Sheppard, J. Banhart, U. Ramamurty, Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression, Acta Materialia 60, 2012 :3604-3615.

DOI: 10.1016/j.actamat.2012.02.029

Google Scholar

[10] B. Matijasevic, J. Banhart, Improvement of aluminium foam technology by tailoring of blowing agent, Scripta Materialia, 54(4), 2006:503–508.

DOI: 10.1016/j.scriptamat.2005.10.045

Google Scholar

[11] B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, N. Wanderka, Modification of titanium hydride for improved aluminium foam manufacture, Acta Materialia, 54(7), 2006:1887-(1900).

DOI: 10.1016/j.actamat.2005.12.012

Google Scholar

[12] S.-Y. He , Y. Zhang, G. Dai, J.-Q. Jiang, Preparation of density-graded aluminum foam Materials Science and Engineering: A, 618(17), 2014: 496–499.

DOI: 10.1016/j.msea.2014.08.087

Google Scholar

[13] C.C Yang, H Nakae, Foaming characteristics control during production of aluminum alloy foam, Journal of Alloys and Compounds, 313(15), 2000:188–191.

DOI: 10.1016/s0925-8388(00)01136-1

Google Scholar

[14] C. Körner, M. Arnold, R. F. Singer, Metal foam stabilization by oxide network particles, Materials Science and Engineering: A, 396 (1-2), 2005,:28-40.

DOI: 10.1016/j.msea.2005.01.001

Google Scholar

[15] C. Körner, F. Berger, M. Arnold, C. Stadelmann, R.F. Singer, Influence of processing conditions on morphology of metal foams produced from metal powder, Materials Science and Technology, 16(7-8), 2000: 781-784.

DOI: 10.1179/026708300101508432

Google Scholar

[16] Z. Cao, Y. Yu , M Li and H. Luo, Cell structure evolution of aluminum foams under reduced pressure foaming, Metall. Mater. Tran. 47(9)2016:4378-4381.

DOI: 10.1007/s11661-016-3640-2

Google Scholar

[17] Z. Cao, M Li, Y. Yu and H. Luo, Fabrication of Aluminum Foams with Fine Cell Structure under Increased Pressure, Adv. Eng. Mater.18(6)2016:1022-1026.

DOI: 10.1002/adem.201500511

Google Scholar