[1]
T. Miyoshi, M. Itoh, S. Akiyama and A. Kitahara, ALPORAS Aluminum Foam: Production Process, Properties, and Applications, Adv. Eng. Mater. 2(4),2000:179–183.
DOI: 10.1002/(sici)1527-2648(200004)2:4<179::aid-adem179>3.0.co;2-g
Google Scholar
[2]
F. Baumgartner, I. Duarte, J. Banhart, Industrialization of Powder Compact Foaming Process Adv. Eng. Mater. 2(4),2000:168-174.
DOI: 10.1002/(sici)1527-2648(200004)2:4<168::aid-adem168>3.0.co;2-o
Google Scholar
[3]
S W Ip, S W Wang, J M Toguri, Aluminum Foam Stabilization by Solid Particles, Canadian Metallurgical Quarterly, 1(38)1999:81-92.
DOI: 10.1179/cmq.1999.38.1.81
Google Scholar
[4]
J. Banhart, Manufacture, Characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46(6), 2001:559–632.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[5]
LP Lefebvre, J Banhart, D C. Dunand, Porous metals and metallic foams: current status and recent developments, Adv. Eng. Mater., 10(9)2008:775-787.
DOI: 10.1002/adem.200800241
Google Scholar
[6]
W-Y. Jang, W-Y. Hsieh, C.-C. Miao, Y.-C. Yen, Microstructure and mechanical properties of ALPORAS closed-cell aluminium foam, Materials Characterization 107 ,2015: 228-238.
DOI: 10.1016/j.matchar.2015.07.012
Google Scholar
[7]
R. Edwin Raj, B.S.S. Daniel Structural and compressive property correlation of closed-cell aluminum foam, Journal of Alloys and Compounds, 467(1–2), 2009: 550–556.
DOI: 10.1016/j.jallcom.2007.12.040
Google Scholar
[8]
A. E. Simone and L. J. Gibson, Aluminum foams produced by liquid state processes, Acta mater. 46( 9)1998: 3109-3123.
DOI: 10.1016/s1359-6454(98)00017-2
Google Scholar
[9]
M. Saadatfar , M. Mukherjee, M. Madadi, G.E. Schroder-Turk, F. Garcia-Moreno F.M. Schaller, S. Hutzler, A.P. Sheppard, J. Banhart, U. Ramamurty, Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression, Acta Materialia 60, 2012 :3604-3615.
DOI: 10.1016/j.actamat.2012.02.029
Google Scholar
[10]
B. Matijasevic, J. Banhart, Improvement of aluminium foam technology by tailoring of blowing agent, Scripta Materialia, 54(4), 2006:503–508.
DOI: 10.1016/j.scriptamat.2005.10.045
Google Scholar
[11]
B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, N. Wanderka, Modification of titanium hydride for improved aluminium foam manufacture, Acta Materialia, 54(7), 2006:1887-(1900).
DOI: 10.1016/j.actamat.2005.12.012
Google Scholar
[12]
S.-Y. He , Y. Zhang, G. Dai, J.-Q. Jiang, Preparation of density-graded aluminum foam Materials Science and Engineering: A, 618(17), 2014: 496–499.
DOI: 10.1016/j.msea.2014.08.087
Google Scholar
[13]
C.C Yang, H Nakae, Foaming characteristics control during production of aluminum alloy foam, Journal of Alloys and Compounds, 313(15), 2000:188–191.
DOI: 10.1016/s0925-8388(00)01136-1
Google Scholar
[14]
C. Körner, M. Arnold, R. F. Singer, Metal foam stabilization by oxide network particles, Materials Science and Engineering: A, 396 (1-2), 2005,:28-40.
DOI: 10.1016/j.msea.2005.01.001
Google Scholar
[15]
C. Körner, F. Berger, M. Arnold, C. Stadelmann, R.F. Singer, Influence of processing conditions on morphology of metal foams produced from metal powder, Materials Science and Technology, 16(7-8), 2000: 781-784.
DOI: 10.1179/026708300101508432
Google Scholar
[16]
Z. Cao, Y. Yu , M Li and H. Luo, Cell structure evolution of aluminum foams under reduced pressure foaming, Metall. Mater. Tran. 47(9)2016:4378-4381.
DOI: 10.1007/s11661-016-3640-2
Google Scholar
[17]
Z. Cao, M Li, Y. Yu and H. Luo, Fabrication of Aluminum Foams with Fine Cell Structure under Increased Pressure, Adv. Eng. Mater.18(6)2016:1022-1026.
DOI: 10.1002/adem.201500511
Google Scholar