Magnesium-Based Foam Biomaterials and their Related Properties

Article Preview

Abstract:

The magnesium-based foam biomaterials were prepared by melt foaming process, where Mg-Ca alloy was used as matrix material, hydroxyapatite (HA) as tackifier, MgCO3 as foaming agent. The magnesium-based foam biomaterials with uniform structure were used for testing to investigate their compressive and biodegradable behaviors. The biodegradable property of the magnesium-based foam was mainly characterized by microstructure observation and hydrogen evolution. The results showed that the porosity of the magnesium-based foam has a more important impact on yield stress and plateau stress of compressive curves compared to HA content or its size. Corrosion rate of the magnesium-based foams decreases with increasing HA addition. Meanwhile, the porosity of the magnesium-based foams also has a very obvious effect on hydrogen evolution, i.e., the hydrogen evolution rate increases with decreasing the porosity of magnesium-based foams.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

282-290

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Karageorgiou and D. Kanplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26 (2005) 5474-5491.

DOI: 10.1016/j.biomaterials.2005.02.002

Google Scholar

[2] B. Chen, K.Y. Yin, T.F. Lu, B.Y. Sun, Q.D., J.X. Zheng, C. Lu, and Z.C. Li, AZ91 Magnesium Alloy/Porous Hydroxyapatite Composite for Potential Application in Bone Repair, J. Mater. Sci. Technol, 32 (2016) 858-864.

DOI: 10.1016/j.jmst.2016.06.010

Google Scholar

[3] L.S. Nair, and C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci, 32 (2007) 762-798.

Google Scholar

[4] A.P. Gupta, and V. Kumar, New emerging trends in synthetic biodegradable polymers- Polylactide: A critique, Eur. Polym. J, 43 (2007) 4053-4074.

DOI: 10.1016/j.eurpolymj.2007.06.045

Google Scholar

[5] H. Hornberger, S. Virtanen, and A.R. Boccaccini, Biomedical coatings on magnesium alloys - A review, Acta. Biomater, 8 (2012) 2442-2455.

DOI: 10.1016/j.actbio.2012.04.012

Google Scholar

[6] M. Razavi, M. Fathi, O. Savabi, D. Vashaee, and L. Tayebi, In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants, Mat. Sci. Eng. C-Mater, 41 (2014) 168-177.

DOI: 10.1016/j.msec.2014.04.039

Google Scholar

[7] Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed. Mater. Res, 39(1998).

DOI: 10.1002/(sici)1097-4636(199802)39:2<190::aid-jbm4>3.0.co;2-k

Google Scholar

[8] Dong J, Kojima H, Uemura T, Kikuchi M, Tateishi T, Tanaka J. In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplantedbone marrow-derived osteoblastic cells, J Biomed. Mater. Res, 57 (2001) 208-216.

DOI: 10.1002/1097-4636(200111)57:2<208::aid-jbm1160>3.0.co;2-n

Google Scholar

[9] J.K. Kim, M.J. Yaszemski, and L.C. Lu, Three-Dimensional Porous Biodegradable Polymeric Scaffolds Fabricated with Biodegradable Hydrogel Porogens, Tissue. Eng. Part. C. Methods, 15 (2009) 583-594.

DOI: 10.1089/ten.tec.2008.0642

Google Scholar

[10] I.M. El-Sherbiny, and M.H. Yacoub, Hydrogel scaffolds for tissue engineering: Progress and challenges, Glob. Cardiol. Sci. Pract, 3 (2013) 316-342.

Google Scholar

[11] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering, Mater. Lett, 132 (2014) 106-110.

DOI: 10.1016/j.matlet.2014.06.036

Google Scholar

[12] F. Witte, H. Ulrich, M. Rudert, E. Willbold, Biodegradable magnesium scaffolds: Part I: Appropriate inflammatory response, J Biomed. Mater. Res. A, (2007) 748-756.

DOI: 10.1002/jbm.a.31170

Google Scholar

[13] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Liu, Y.X. Li, Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material, Mater. Lett, 64 (2010) 1871-1874.

DOI: 10.1016/j.matlet.2010.06.015

Google Scholar

[14] E.W. Andrews, G. Gioux, P. Onck, and L.J. Gibson, Size Effects in Ductile Cellular Solids. Part II: Experimental Results, Int. J Mech. Sci, 43 (2001) 701-714.

DOI: 10.1016/s0020-7403(00)00043-6

Google Scholar

[15] R.L. Xin, B. Li, L. Li, Q. Liu, Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl, Mater. Design, 32 (2011) 4548-4552.

DOI: 10.1016/j.matdes.2011.04.031

Google Scholar

[16] X.C. Xia, X.W. Chen, W.M. Zhao, H.T Xue, B. Liao, B.Y. Hur, Z.F. Wang, Corrosion behavior of closed-cell AZ31 Mg alloy foam in NaCl aqueous solutions, Corros. Sci, 80 (2014) 247-256.

DOI: 10.1016/j.corsci.2013.11.033

Google Scholar

[17] I. Duarte, M. Vesenjak, L. K. Opara, Compressive behaviour of unconstrained and constrained integral-skin closed-cell aluminium foam, Compos. Struct, 154 (2016) 231-238.

DOI: 10.1016/j.compstruct.2016.07.038

Google Scholar

[18] D.H. Yang, S.R. Yang, H.Wang, A.B. Ma, J.H. Jiang, J.Q. Chen, D.L. Wang, Compressive properties of cellular Mg foams fabricated by melt-foaming method, Mat. Sci. Eng. A, 527 (2010) 5405-5409.

DOI: 10.1016/j.msea.2010.05.017

Google Scholar

[19] X.C. Xia, X.W. Chen, Z. Zhang, X. Chen, W.M. Zhao, B. Liao, B. Hur, Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam, J. Magn. Alloy, (2013) 330-335.

DOI: 10.1016/j.jma.2013.11.006

Google Scholar