Synthesis and Characterization of ZrB2-ZrC Composite Powders from Zircon Sand by Self-Propagating High-Temperature Synthesis Method

Article Preview

Abstract:

ZrB2-ZrC composite powders were synthesized from zircon sand by self-propagating high-temperature synthesis (SHS). The reactions were verified and the feasibility of obtaining the predicted products was calculated from the adiabatic temperature (Tad) and the equilibrium composition using the HSC® chemistry program. The results show that the SHS products consisted of ZrB2, ZrC, ZrO2, ZrSiO4, MgO, and Mg2SiO4. Leaching the products with 0.5 M of HCl solution eliminated the by-product of MgO and the intermediate Mg2SiO4 phases. The phase composition of the products was characterized by X-ray diffraction (XRD) and the morphologies were characterized by scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-70

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Hu, K. Gui, W. Hong, X. Zhang, and S. Dong: J. Eur. Ceram. Soc. Vol. 37 (2017), pp.2317-2324.

Google Scholar

[2] D. Li, Z. Yang, D. Jia, C. Hu, B. Liang, and Y. Zhou: J. Eur. Ceram. Soc. Vol. 35 (2015), pp.4399-4410.

Google Scholar

[3] X. Deng, S. Du, H. Zhang, F. Li, J. Wang, W. Zhao, F. Liang, Z. Huang, and S. Zhang: Ceram. Int. Vol. 41 (2015), pp.14419-14426.

Google Scholar

[4] N. Li, P. Xing, C. Li, P. Wang, X. Jin, and X. Zhang: Appl. Surf. Sci. Vol. 409 (2017), pp.1-7.

Google Scholar

[5] H.L. Wang, C.A. Wang, D.L. Chen, H.L. Xu, H.X. Lu, R. Zhang, and L. Feng: Front. Mater. Sci. China Vol. 4(3) (2010), pp.276-280.

Google Scholar

[6] D. Ağoğullar, H. Gӧkçe, I. Duman, M.L. Ӧveçoğlu: J. Eur. Ceram. Soc. Vol. 32 (2012), pp.1447-1455.

Google Scholar

[7] M. Jalaly, M. Tamizifar, M.Sh. Bafghi, and F.J. Gotor: J. Alloys Compd. Vol. 581 (2013), pp.782-787.

DOI: 10.1016/j.jallcom.2013.07.142

Google Scholar

[8] M. Jalaly, M.Sh. Bafghi, M. Tamizifar, and F.J. Gotor: J. Alloys Compd. Vol. 598 (2014), pp.113-119.

Google Scholar

[9] L. Zhang, Q. Li, Z. Wang, C. Wu, and X. Cheng: J. Ceram. Soc. Jpn. Vol. 123(7) (2015), pp.607-610.

Google Scholar

[10] S.M. Emami, E. Salahi, M. Sakeri, and S.A. Tayebifard: Ceram. Int. Vol. 42 (2016), pp.6581-6586.

Google Scholar

[11] S. Niyomwas: Journal of Metals, Materials, and Minerals Vol. 19 (2009), pp.21-25.

Google Scholar

[12] Y. Xuanyi, L. Guanghua, J. Haibo and C. Kexin: J. Alloys Compd. Vol. 509 (2011), p. L301-L303.

Google Scholar

[13] N.A. Gokcen and R.G. Reddy: Thermodynamics, Plenum Press, New York, U.S.A. (1996).

Google Scholar

[14] G. Qilong, Y. Yahui, L. Junguo, S. Qiang, and Z. Lianmeng: Mater. Des. Vol. 32 (2011), pp.4289-4294.

DOI: 10.1016/j.matdes.2011.04.012

Google Scholar

[15] H. Yuan, J. Li, Q. Shen, and L. Zhang: Int. J. Refract. Met. Hard Mater. Vol. 34 (2012), pp.3-7.

Google Scholar

[16] B. Zhao, Y. Zhang, J. Li, B. Yang, T. Wang, Y. Hu, D. Sun, R. Li, S. Yin, Z. Feng, and T. Sato: J. Solid State Chem. Vol. 207 (2013), pp.1-5.

Google Scholar

[17] M. Zhang, B. Zou, J. Xu, X. Cai, Y. Wang, M. Huang, Y. Fang, Y. Huo, and X. Cao: Mater. Des. Vol. 81 (2015), pp.65-72.

Google Scholar