Influence of Cold Rolling Process on Mini Spangle Formation of 55%Al-Zn Alloy Coating Steel Sheet

Article Preview

Abstract:

According to that mini spangle is the most common defect affecting the appearance quality of hot-dip 55%Al-Zn alloy coated steel sheet, industrial experiments and statistical analysis were done to investigate the influence of cold rolling process on the formation of mini spangle. The results show that, with the decrease of rolling oil concentration, the increase of rolling time, and the increase of rolling pass, the probability of mini-spangle formation increases. Due to the different equipment conditions, the probability of mini-spangle formation on the upper and lower surfaces of steel strip is different. The reason of mini-spangle formation lies in the presence of carboxylates (R-COO-Fe) result from the residual emulsion on the surface of cold rolled steel strip. The carboxylates may interfere with the interfacial reaction between the steel substrate and Al-Zn bath, and result in more convex Fe5Si2Al20 phases formed on the surface of intermetallic compound layer. The Fe5Si2Al20 phases may provide more heterogeneous nucleation sites for the formation of Al-rich dendrites and lead to the formation of mini spangle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-177

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Y. Chen, D. J. Willis. The Behavior of Silicon in the Solidification of Zn-55Al-1.6Si Coating on Steel [J]. Metallurgical and Materials Transactions A, 2005, 36A: 117-128.

DOI: 10.1007/s11661-005-0144-x

Google Scholar

[2] B. Xu, D. Phelan, R. Dippenaar, etc. Role of Silicon in Solidification Microstructure in Hot-dipped 55 wt. %Al-Zn-Si Coatings [J]. Materials Science and Engineering A, 2008, 473: 76~80.

DOI: 10.1016/j.msea.2007.03.110

Google Scholar

[3] D. Phelan, B. J. Xu, R. Dippenaar. Formation of Intermetallic Phase on 55wt%Al-Zn-Si Hot Dip Strip [J]. Materials Science and Engineering, 2006, 420A: 144~149.

DOI: 10.1016/j.msea.2006.01.085

Google Scholar

[4] D. C. Bae, H. S. Shin, S. K. Chang. Influence of Processing Variables on Coating Characteristics of 55%Al-Zn Coated Steel Sheet [J]. CAMP-ISIJ, 1996, 9: 521.

Google Scholar

[5] B. J. Xu, D. Phelan, R. Dippenaar, etc. Nucleation during Solidification of 55wt%Al-Zn-Si Alloy Coatings [C]. Chicago, USA: Galvatech'04, 2004: 713-721.

Google Scholar

[6] A. Semoroz, Y. Durandet, M.Rappaz. EBSD Characterization of Dendrite Growth Directions, Texture and Misorientations in Hot-dipped Al-Zn-Si Coatings [J]. Acta mater, 2001, 49: 529~541.

DOI: 10.1016/s1359-6454(00)00322-0

Google Scholar

[7] R. Y. Chen, D. Yuen. Microstructure and Crystallography of Zn-55Al-1.6Si Coating Spangle on Steel [J]. Metallurgical and Materials Transactions A, 2012, 43A: 4711-4723.

DOI: 10.1007/s11661-012-1259-5

Google Scholar

[8] A. Humayun. Production & Performance of 55%Al-Zn Coated Sheet [C]. Chicago, USA: Galvatech'95, 1995: 443-447.

Google Scholar

[9] E. Palma, J. M. Puente, M. Morcillo. The Atmospheric Corrosion Mechanism of 55%Al-Zn coating on Steel [J]. Corrosion Science, 1998, 40(1): 61-68.

DOI: 10.1016/s0010-938x(97)00112-1

Google Scholar

[10] A. R. Moreira, Z. Panossian, P. L. Camargo, etc. Zn/55Al Coating Microstructure and Corrosion mechanism [J]. Corrosion Science, 2006, 48: 564-576.

DOI: 10.1016/j.corsci.2005.02.012

Google Scholar

[11] P. Qiu, C. Leygraf, I. O. Wallinder. Evolution of Corrosion Products and Metal Release from Galvalume Coatings on Steel during Short and Long-term Atmospheric Exposures [J]. Materials Chemistry and Physics, 2012, 133: 419-428.

DOI: 10.1016/j.matchemphys.2012.01.054

Google Scholar

[12] S. Hikino, T. Matsunaga, M. Aral, etc. Influence of Coating Condition on Spangles of 55%Al-Zn Alloy Coated Steel Sheet [J]. La revue de Metallurgle-ATS-JS. 1997, 12 (1): 168-169.

Google Scholar

[13] J. F. Willem, S. Claessens, H. Cormil, etc. Solidification Mechanisms of Aluzinc Coatings Effect on Spangle Size [C]. Brussels, Belgium: Galvatech'01, (2001).

Google Scholar

[14] X. D. Hao, B. K. Chen, S. M. Jiang, etc. Study on Galvalume Spangle Control Process [C]. Beijing, China: 2011 IEEE, (2011).

Google Scholar

[15] J. H. Selverian, M. R. Notis, A. R. Marder. The Microstructure of 55%Al-Zn-Si (Galvalume) Hot Dip Coatings [J]. Materials Engineering, 1987, 9(2): 133-140.

DOI: 10.1007/bf02833702

Google Scholar

[16] S. J. Park, K. W. Jung, H. S. Koh, etc. Production of Heavy Gauged HY-Galvalume in Hyundai HYSCO [J]. Corrosion Science and Technology, 2011, 10(5): 12-17.

Google Scholar

[17] T. X. Guo, X. Q. Dong, S. H. Deng, etc. Influence of Titanium on Hot-dip 55%Al-Zn Alloy Coating. In: Sheng ﹠Wang (ed.), Manufacturing and Engineering Technology, Taylor﹠ Francis Group, London, UK. 2015, 283-286.

Google Scholar

[18] T. X. Guo, C. S. Liu, Y. L. Zhou. Influence of Rare Earth on Hot-dipped 55%Al-Zn Alloy Coating [J]. Advanced Materials Research, 2013, 774-776: 1132-1136.

DOI: 10.4028/www.scientific.net/amr.774-776.1132

Google Scholar

[19] Y. L. Ren, N. M. Wen, Z. P. Zhu, etc. Study of the Spangle Size of 55%AI-Zn-Si Steel [J]. Baosteel Technical Research, 20141, 8(4), 41-47.

Google Scholar