[1]
R. Y. Chen, D. J. Willis. The Behavior of Silicon in the Solidification of Zn-55Al-1.6Si Coating on Steel [J]. Metallurgical and Materials Transactions A, 2005, 36A: 117-128.
DOI: 10.1007/s11661-005-0144-x
Google Scholar
[2]
B. Xu, D. Phelan, R. Dippenaar, etc. Role of Silicon in Solidification Microstructure in Hot-dipped 55 wt. %Al-Zn-Si Coatings [J]. Materials Science and Engineering A, 2008, 473: 76~80.
DOI: 10.1016/j.msea.2007.03.110
Google Scholar
[3]
D. Phelan, B. J. Xu, R. Dippenaar. Formation of Intermetallic Phase on 55wt%Al-Zn-Si Hot Dip Strip [J]. Materials Science and Engineering, 2006, 420A: 144~149.
DOI: 10.1016/j.msea.2006.01.085
Google Scholar
[4]
D. C. Bae, H. S. Shin, S. K. Chang. Influence of Processing Variables on Coating Characteristics of 55%Al-Zn Coated Steel Sheet [J]. CAMP-ISIJ, 1996, 9: 521.
Google Scholar
[5]
B. J. Xu, D. Phelan, R. Dippenaar, etc. Nucleation during Solidification of 55wt%Al-Zn-Si Alloy Coatings [C]. Chicago, USA: Galvatech'04, 2004: 713-721.
Google Scholar
[6]
A. Semoroz, Y. Durandet, M.Rappaz. EBSD Characterization of Dendrite Growth Directions, Texture and Misorientations in Hot-dipped Al-Zn-Si Coatings [J]. Acta mater, 2001, 49: 529~541.
DOI: 10.1016/s1359-6454(00)00322-0
Google Scholar
[7]
R. Y. Chen, D. Yuen. Microstructure and Crystallography of Zn-55Al-1.6Si Coating Spangle on Steel [J]. Metallurgical and Materials Transactions A, 2012, 43A: 4711-4723.
DOI: 10.1007/s11661-012-1259-5
Google Scholar
[8]
A. Humayun. Production & Performance of 55%Al-Zn Coated Sheet [C]. Chicago, USA: Galvatech'95, 1995: 443-447.
Google Scholar
[9]
E. Palma, J. M. Puente, M. Morcillo. The Atmospheric Corrosion Mechanism of 55%Al-Zn coating on Steel [J]. Corrosion Science, 1998, 40(1): 61-68.
DOI: 10.1016/s0010-938x(97)00112-1
Google Scholar
[10]
A. R. Moreira, Z. Panossian, P. L. Camargo, etc. Zn/55Al Coating Microstructure and Corrosion mechanism [J]. Corrosion Science, 2006, 48: 564-576.
DOI: 10.1016/j.corsci.2005.02.012
Google Scholar
[11]
P. Qiu, C. Leygraf, I. O. Wallinder. Evolution of Corrosion Products and Metal Release from Galvalume Coatings on Steel during Short and Long-term Atmospheric Exposures [J]. Materials Chemistry and Physics, 2012, 133: 419-428.
DOI: 10.1016/j.matchemphys.2012.01.054
Google Scholar
[12]
S. Hikino, T. Matsunaga, M. Aral, etc. Influence of Coating Condition on Spangles of 55%Al-Zn Alloy Coated Steel Sheet [J]. La revue de Metallurgle-ATS-JS. 1997, 12 (1): 168-169.
Google Scholar
[13]
J. F. Willem, S. Claessens, H. Cormil, etc. Solidification Mechanisms of Aluzinc Coatings Effect on Spangle Size [C]. Brussels, Belgium: Galvatech'01, (2001).
Google Scholar
[14]
X. D. Hao, B. K. Chen, S. M. Jiang, etc. Study on Galvalume Spangle Control Process [C]. Beijing, China: 2011 IEEE, (2011).
Google Scholar
[15]
J. H. Selverian, M. R. Notis, A. R. Marder. The Microstructure of 55%Al-Zn-Si (Galvalume) Hot Dip Coatings [J]. Materials Engineering, 1987, 9(2): 133-140.
DOI: 10.1007/bf02833702
Google Scholar
[16]
S. J. Park, K. W. Jung, H. S. Koh, etc. Production of Heavy Gauged HY-Galvalume in Hyundai HYSCO [J]. Corrosion Science and Technology, 2011, 10(5): 12-17.
Google Scholar
[17]
T. X. Guo, X. Q. Dong, S. H. Deng, etc. Influence of Titanium on Hot-dip 55%Al-Zn Alloy Coating. In: Sheng ﹠Wang (ed.), Manufacturing and Engineering Technology, Taylor﹠ Francis Group, London, UK. 2015, 283-286.
Google Scholar
[18]
T. X. Guo, C. S. Liu, Y. L. Zhou. Influence of Rare Earth on Hot-dipped 55%Al-Zn Alloy Coating [J]. Advanced Materials Research, 2013, 774-776: 1132-1136.
DOI: 10.4028/www.scientific.net/amr.774-776.1132
Google Scholar
[19]
Y. L. Ren, N. M. Wen, Z. P. Zhu, etc. Study of the Spangle Size of 55%AI-Zn-Si Steel [J]. Baosteel Technical Research, 20141, 8(4), 41-47.
Google Scholar