Effect of Cl- Concentration on Pitting Corrosion Property of Maraging Hardened Stainless Steel Based on Pourbaix Diagram

Article Preview

Abstract:

The corrosion behavior of maraging hardened stainless steel (MHSS) in different Cl- medium was investigated by thermodynamics simulation and electrochemical experiments. The simulation results show that the thermodynamic stability zone decreases with the increase of the concentration of Cl-. Some of chromium transformed into Cr(OH)2+ and adsorbed on the surface of stainless steel, and others generated Cr2O3 protecting the matrix. Mo reacted with O2 to form MoO42- adsorbed on the surface of the material, which inhibited the destruction of Cl-. The electrochemical experiments indicate that the concentration of Cl- is in the range of 2%-7%. The pitting potential and self-corrosion potential of MHSS decreased linearly with the increase of ion concentration, and the pitting corrosion resistance of MHSS decreased. When the self-corrosion current increases from 1.9888 μA to 2.6524 μA, the corrosion tendency of the material enhances.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Kose and R. Kacar : Desi. Vol. 64 (2014), pp.221-226.

Google Scholar

[2] S. Lu, K. Yao, Y. Chen, M. Wang, N. Chen and X. Ge: Corros. Sci. Vol. 103 (2016), pp.95-104.

Google Scholar

[3] T.J. Mesquita, E. Chauveau, M. Mantel, N. Bouvier and D. Koschel: Corros. Sci. Vol. 81 (2014), pp.152-161.

Google Scholar

[4] X. P. Ma, L. J. Wang, C. M. Liu and S. V. Subramanian: Mater. Sci.Eng. Vol. 539 (2012), p.271–279.

Google Scholar

[5] A. Bojack, L. Zhao, P.F. Morris and J. Sietsma: Mater.Charact. Vol. 71 (2012), p.77–86.

Google Scholar

[6] H. Marchebois, J. Leyer and B. Orlans-Joliet, in: NACE corrosion conference, Houston, TX (2007), NACE International.

Google Scholar

[7] X. Li and T. Bell: Corros. Sci. Vol. 48 (2006), pp.2036-2049.

Google Scholar

[8] Wen Chen, Guangxing Xu, Liwei Fan and Yageng Chen: Journal of Northeast University. Vol. 36 (2015), pp.819-822+837.

Google Scholar

[9] Shuwei Li, Sha Zhang, Jinxiang Fang and Yanxin Qiao: Corrosion and Protective measures. Vol. 38 (2017), pp.583-588.

Google Scholar

[10] Dejun Yang and Zhuoshen Shen: Metallurgical Industry Press. (1999), pp.61-62.

Google Scholar

[11] S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki: Acta Mater. Vol. 51 (2003), p.1789.

Google Scholar

[12] S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen: Acta Mater. Vol. 54 (2006), p.5323.

Google Scholar

[13] F. Maresca, V.G. Kouznetsova and M. G. D. Geers Modell: Mater. Sci. Eng. Vol. 22 (2014), p.045011.

Google Scholar

[14] F. Maresca, V.G. Kouznetsova and M.G.D. Geers J. Mech. Phys. Solids. Vol. 73 (2014), p.69.

Google Scholar

[15] X. Q. Zhang, Y. P.Li, N. Tang, E. Onodera and A. Chiba: Electrochim. Acta. Vol. 125 (2014), pp.543-555.

Google Scholar