[1]
T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.
DOI: 10.1016/j.actamat.2013.08.018
Google Scholar
[2]
A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[3]
R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch, B. Baudelet, Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation, Acta Mater. 44 (1996) 4705-4712.
DOI: 10.1016/s1359-6454(96)00156-5
Google Scholar
[4]
H.-J. Lee, S.K. Lee, K.H. Jung, G.A. Lee, B. Ahn, M. Kawasaki, T.G. Langdon, Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng. A 630 (2015) 90-98.
DOI: 10.1016/j.msea.2015.02.011
Google Scholar
[5]
M. Kawasaki, B. Ahn, P. Kumar, J.-i Jang, T.G. Langdon, Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques, Adv. Mater. Eng. 19 (2017) 1600578 (1-17).
DOI: 10.1002/adem.201600578
Google Scholar
[6]
D.-H. Lee, I.-C. Choi, M.-Y. Seok, J. He, Z. Lu, J.-Y. Suh, M. Kawasaki, T.G. Langdon, J.-i. Jang, Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, J. Mater. Res. 30 (2015) 2804-2815.
DOI: 10.1557/jmr.2015.239
Google Scholar
[7]
J.J. Niu, J.Y. Zhang, G. Liu, P. Zhang, S.Y. Lei, G.J. Zhang, J. Sun, Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films, Acta Mater. 60 (2012) 3677-3689.
DOI: 10.1016/j.actamat.2012.03.052
Google Scholar
[8]
D.-H. Lee, J.-A. Lee, Y. Zhao, Z. Lu, J.-Y. Suh, J.-Y. Kim, U. Ramamurty, M. Kawasaki, T.G. Langdon, J.-l Jang, Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high entropy alloy: A nanomechanical analysis, Mater. Sci. Eng. A 140 (2017) 443-451.
DOI: 10.1016/j.actamat.2017.08.057
Google Scholar
[9]
B. Ahn, A.P. Zhilyaev, H.-J. Lee, M. Kawasaki, T.G. Langdon, Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature, Mater. Sci. Eng. A 635 (2015) 109-117.
DOI: 10.1016/j.msea.2015.03.042
Google Scholar
[10]
M. Kawasaki, B. Ahn, H.J. Lee, A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding, J. Mater. Res. 31 (2016) 88-98.
DOI: 10.1557/jmr.2015.257
Google Scholar
[11]
J.-K. Han, H.-J. Lee, J.-I, Jang, M. Kawasaki, T.G. Langdon, Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion, Mater. Sci. Eng. A 684 (2017) 318-327.
DOI: 10.1016/j.msea.2016.12.067
Google Scholar
[12]
J. Mueller, K. Durst, D. Amberger, M. Göken, Local investigations of the mechanical properties of ultrafine grained metals by nanoindentations, Mater. Sci. Forum 503-504 (2006) 31-36.
DOI: 10.4028/www.scientific.net/msf.503-504.31
Google Scholar
[13]
A. Böhner, V. Maier, K. Durst, H.W. Höppel, M. Göken, Macro- and nanomechanical properties and strain rate sensitivity of accumulative roll bonded and equal channel angular pressed ultrafine-grained materials, Adv. Eng. Mater. 13 (2011) 251-255.
DOI: 10.1002/adem.201000270
Google Scholar
[14]
V. Maier, B. Merle, M. Göken, K. Durst, An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures, J. Mater. Res. 28 (2013) 1177-1188.
DOI: 10.1557/jmr.2013.39
Google Scholar
[15]
J.M. Wheeler, V. Maier, K. Durst, M. Göken, J. Michler, Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature, Mater. Sci. Eng. A 585 (2013) 108-113.
DOI: 10.1016/j.msea.2013.07.033
Google Scholar
[16]
I.-C. Choi, D.-H. Lee, B. Ahn, K. Durst, M. Kawasaki, T.G. Langdon, J.-i. Jang, Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion, Scripta Mater. 94 (2015) 44-47.
DOI: 10.1016/j.scriptamat.2014.09.014
Google Scholar
[17]
R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, The effect of annealing on tensile deformation behavior of nanostructured SPD titanium, Scripta Mater. 49 (2003) 669-674.
DOI: 10.1016/s1359-6462(03)00395-6
Google Scholar
[18]
P. Kumar, M. Kawasaki, T.G. Langdon, Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures, J. Mater. Sci. 51 (2016) 7-18.
DOI: 10.1007/s10853-015-9143-5
Google Scholar
[19]
C.A. Schuh, Nanoindentation studies of materials, Mater. Today 9 (2006) 32–40.
Google Scholar
[20]
J.Y. Kang, J.G. Kim, H.W. Park, H.S. Kim, Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion, Sci. Rep. 6 (2016) 26590(1–10).
DOI: 10.1038/srep26590
Google Scholar
[21]
M. Kawasaki, J.-i. Jang, Micro-mechanical response of an Al-Mg hybrid system synthesized by high-pressure torsion, Materials 10 (2017) 596(1-15).
DOI: 10.3390/ma10060596
Google Scholar