Micro-Scale Mechanical Behavior of Ultrafine-Grained Materials Processed by High-Pressure Torsion

Article Preview

Abstract:

Bulk ultrafine-grained (UFG) materials usually show superior mechanical and physical properties. The development of micro-mechanical behavior is observed after significant changes in microstructure through high-pressure torsion (HPT) processing. This report summarizes recent results on the evolution of small-scale mechanical response examined by the nanoindentation technique on two UFG materials including a high-entropy alloy and an Al-Mg metal matrix nanocomposite processed by HPT. Special emphasis is placed on demonstrating the interrelationship of essential microstructural changes with increasing torsional strain and applying a post-deformation annealing treatment and the evolution of the micro-mechanical behavior in these UFG materials by estimating the strain rate sensitivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1495-1500

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[2] A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[3] R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch, B. Baudelet, Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation, Acta Mater. 44 (1996) 4705-4712.

DOI: 10.1016/s1359-6454(96)00156-5

Google Scholar

[4] H.-J. Lee, S.K. Lee, K.H. Jung, G.A. Lee, B. Ahn, M. Kawasaki, T.G. Langdon, Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng. A 630 (2015) 90-98.

DOI: 10.1016/j.msea.2015.02.011

Google Scholar

[5] M. Kawasaki, B. Ahn, P. Kumar, J.-i Jang, T.G. Langdon, Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques, Adv. Mater. Eng. 19 (2017) 1600578 (1-17).

DOI: 10.1002/adem.201600578

Google Scholar

[6] D.-H. Lee, I.-C. Choi, M.-Y. Seok, J. He, Z. Lu, J.-Y. Suh, M. Kawasaki, T.G. Langdon, J.-i. Jang, Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, J. Mater. Res. 30 (2015) 2804-2815.

DOI: 10.1557/jmr.2015.239

Google Scholar

[7] J.J. Niu, J.Y. Zhang, G. Liu, P. Zhang, S.Y. Lei, G.J. Zhang, J. Sun, Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films, Acta Mater. 60 (2012) 3677-3689.

DOI: 10.1016/j.actamat.2012.03.052

Google Scholar

[8] D.-H. Lee, J.-A. Lee, Y. Zhao, Z. Lu, J.-Y. Suh, J.-Y. Kim, U. Ramamurty, M. Kawasaki, T.G. Langdon, J.-l Jang, Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high entropy alloy: A nanomechanical analysis, Mater. Sci. Eng. A 140 (2017) 443-451.

DOI: 10.1016/j.actamat.2017.08.057

Google Scholar

[9] B. Ahn, A.P. Zhilyaev, H.-J. Lee, M. Kawasaki, T.G. Langdon, Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature, Mater. Sci. Eng. A 635 (2015) 109-117.

DOI: 10.1016/j.msea.2015.03.042

Google Scholar

[10] M. Kawasaki, B. Ahn, H.J. Lee, A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding, J. Mater. Res. 31 (2016) 88-98.

DOI: 10.1557/jmr.2015.257

Google Scholar

[11] J.-K. Han, H.-J. Lee, J.-I, Jang, M. Kawasaki, T.G. Langdon, Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion, Mater. Sci. Eng. A 684 (2017) 318-327.

DOI: 10.1016/j.msea.2016.12.067

Google Scholar

[12] J. Mueller, K. Durst, D. Amberger, M. Göken, Local investigations of the mechanical properties of ultrafine grained metals by nanoindentations, Mater. Sci. Forum 503-504 (2006) 31-36.

DOI: 10.4028/www.scientific.net/msf.503-504.31

Google Scholar

[13] A. Böhner, V. Maier, K. Durst, H.W. Höppel, M. Göken, Macro- and nanomechanical properties and strain rate sensitivity of accumulative roll bonded and equal channel angular pressed ultrafine-grained materials, Adv. Eng. Mater. 13 (2011) 251-255.

DOI: 10.1002/adem.201000270

Google Scholar

[14] V. Maier, B. Merle, M. Göken, K. Durst, An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures, J. Mater. Res. 28 (2013) 1177-1188.

DOI: 10.1557/jmr.2013.39

Google Scholar

[15] J.M. Wheeler, V. Maier, K. Durst, M. Göken, J. Michler, Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature, Mater. Sci. Eng. A 585 (2013) 108-113.

DOI: 10.1016/j.msea.2013.07.033

Google Scholar

[16] I.-C. Choi, D.-H. Lee, B. Ahn, K. Durst, M. Kawasaki, T.G. Langdon, J.-i. Jang, Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion, Scripta Mater. 94 (2015) 44-47.

DOI: 10.1016/j.scriptamat.2014.09.014

Google Scholar

[17] R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, The effect of annealing on tensile deformation behavior of nanostructured SPD titanium, Scripta Mater. 49 (2003) 669-674.

DOI: 10.1016/s1359-6462(03)00395-6

Google Scholar

[18] P. Kumar, M. Kawasaki, T.G. Langdon, Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures, J. Mater. Sci. 51 (2016) 7-18.

DOI: 10.1007/s10853-015-9143-5

Google Scholar

[19] C.A. Schuh, Nanoindentation studies of materials, Mater. Today 9 (2006) 32–40.

Google Scholar

[20] J.Y. Kang, J.G. Kim, H.W. Park, H.S. Kim, Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion, Sci. Rep. 6 (2016) 26590(1–10).

DOI: 10.1038/srep26590

Google Scholar

[21] M. Kawasaki, J.-i. Jang, Micro-mechanical response of an Al-Mg hybrid system synthesized by high-pressure torsion, Materials 10 (2017) 596(1-15).

DOI: 10.3390/ma10060596

Google Scholar