Development of Ultra-High Temperature Ceramics: From Monoliths to Composites

Article Preview

Abstract:

Regarding materials development, our studies have been mainly focused on ZrB2-SiC and HfB2-SiC compositions with TaSi2 or Y2O3 additions using hot pressing and spark plasma sintering. These additives have been used to decrease the sintering temperature and to improve the oxidation resistance. Interesting mechanical properties at room and high temperature have been measured. Moreover, excellent oxidation behaviors have been observed up to 2000-2200°C with Y2O3. Last developments are centered on the manufacturing of ultrahigh temperature ceramic matrix composites (UHTCMC) using slurry infiltration and pyrolysis for example. First results are encouraging.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2041-2046

Citation:

Online since:

December 2018

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y. ULTRA-HIGH TEMPERATURE CERAMICS : Materials for Extreme Environment Applications William G. Fahrenholtz Eric J. Wuchina William E. Lee Yanchun Zhou. (2014).

DOI: 10.1002/9781118700853

Google Scholar

[2] Monteverde, F., Bellosi, A. & Scatteia, L. Processing and properties of ultra-high temperature ceramics for space applications. Mater. Sci. Eng. A 485, 415–421 (2008).

DOI: 10.1016/j.msea.2007.08.054

Google Scholar

[3] Silvestroni, L., Meriggi, G. & Sciti, D. Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corros. Sci. 83, 281–291 (2014).

DOI: 10.1016/j.corsci.2014.02.026

Google Scholar

[4] Jayaseelan, D. D. et al. Microstructural evolution of HfB2 based ceramics during oxidation at 1600-2000 degrees C. Adv. Appl. Ceram. 114, 277–295 (2015).

Google Scholar

[5] Opeka, M. M., Talmy, I. G. & Zaykoski, J. A. Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 39, 5887–5904 (2004).

DOI: 10.1023/b:jmsc.0000041686.21788.77

Google Scholar

[6] Justin, J.-F. & Julian-Jankowiak, A. Ultra High Temperature Ceramics: Densification, Properties andThermal Stability. Aerosp. Lab J. 3, (2011).

Google Scholar

[7] Guérineau, V. & Julian-Jankowiak, A. Oxidation mechanisms under water vapour conditions of ZrB2-SiC and HfB2-SiC based materials up to 2400°C. J. Eur. Ceram. Soc. 38, 421–432 (2018).

DOI: 10.1016/j.jeurceramsoc.2017.09.015

Google Scholar

[8] Bouchez, M. et al. Combustor and Material Integration for high speed aircraft in the European research Program ATLLAS2. in (American Institute of Aeronautics and Astronautics, 2014).

Google Scholar

[9] Kuhn, M. et al. Ceramic Strut Injection Technologies for High-Speed Flight. in 21st AIAA International Space Planes and Hypersonics Technologies Conference (American Institute of Aeronautics and Astronautics).

DOI: 10.2514/6.2017-2416

Google Scholar

[10] Silvestroni, L., Fabbriche, D. D. & Sciti, D. Tyranno SA3 fiber-ZrB2 composites. Part I: Microstructure and densification. Mater. Des. 65, 1253–1263 (2015).

DOI: 10.1016/j.matdes.2014.08.068

Google Scholar

[11] Paul, A. et al. UHTC-carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation. J. Eur. Ceram. Soc. 33, 423–432 (2013).

DOI: 10.1016/j.jeurceramsoc.2012.08.018

Google Scholar

[12] Li, L., Wang, Y., Cheng, L. & Zhang, L. Preparation and properties of 2D C/SiC–ZrB2–TaC composites. Ceram. Int. 37, 891–896 (2011).

DOI: 10.1016/j.ceramint.2010.10.033

Google Scholar

[13] Hu, C., Pang, S., Tang, S., Wang, Y. & Cheng, H.-M. An integrated composite with a porous C-f/C-ZrB2-SiC core between two compact outer layers of C-f/C-ZrB2-SiC and C-f/C-SiC. J. Eur. Ceram. Soc. 35, 1113–1117 (2015).

DOI: 10.1016/j.jeurceramsoc.2014.10.005

Google Scholar

[14] Zhang, S., Wang, S., Zhu, Y. & Chen, Z. Fabrication of ZrB2-ZrC-based composites by reactive melt infiltration at relative low temperature. Scr. Mater. 65, 139–142 (2011).

DOI: 10.1016/j.scriptamat.2011.03.033

Google Scholar

[15] ASTM Standard E1876-09 - Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration.

DOI: 10.1520/e1876-15

Google Scholar

[16] Anstis, G. R., Chantikul, P., Lawn, B. R. & Marshall, D. B. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I. Direct Crack Measurements. J. Am. Ceram. Soc. 64, 534–553 (1981).

DOI: 10.1111/j.1151-2916.1981.tb10320.x

Google Scholar

[17] Hu Chunfeng et al. In situ Reaction Synthesis and Mechanical Properties of TaC–TaSi2 Composites. Int. J. Appl. Ceram. Technol. 7, 697–703 (2009).

Google Scholar

[18] Ben Ramdane, C. et al. Microstructure and mechanical behaviour of a NextelTM610/alumina weak matrix composite subjected to tensile and compressive loadings. J. Eur. Ceram. Soc. 37, 2919–2932 (2017).

DOI: 10.1016/j.jeurceramsoc.2017.02.042

Google Scholar