[1]
V.G. Gavriljuk, V.N. Shivanyuk, J. Foct, Diagnostic experimental results on the hydrogen embrittlement of austenitic steels, Acta Mater. 51 (2003) 1293-1305.
DOI: 10.1016/s1359-6454(02)00524-4
Google Scholar
[2]
I.M. Robertson, N.K. Birnbaum, Hydrogen effects on Plasticity, in: J.P. Hirth, L. Kubin (Eds.), Dislocation in Solids, Elsevier, North Holland, 2009, pp.251-293.
Google Scholar
[3]
L. Zhang, Z. Li, J. Zheng, Y. Zhao, P. Xu, C. Zhou, X. Li, Effect of strain-induced martensite on hydrogen embrittlement of austenitic stainless steels investigated by combined tension and hydrogen release methods, Int. J. Hyd. Ener. 38 (2013) 8208-8214.
DOI: 10.1016/j.ijhydene.2013.01.198
Google Scholar
[4]
J. Yamabe, O. Takakuwa, H. Matsunaga, H. Itoga, S. Matsuoka, Hydrogen diffusivity and tensile-ductility loss of solution-treated austenitic stainless steels with external and internal hydrogen, Int. J. Hyd. Ener. 42 (2017) 13289-13299.
DOI: 10.1016/j.ijhydene.2017.04.055
Google Scholar
[5]
T. Michler, C. San Marchi, J. Naumann, S. Weber, M. Martin, Hydrogen environment embrittlement of stable austenitic steels, Int. J. Hyd. Ener. 37 (2012) 16231-16246.
DOI: 10.1016/j.ijhydene.2012.08.071
Google Scholar
[6]
T. Michler, J. Naumann, M. Hock, K. Berreth, M.P. Balogh, E. Sattler, Microstructural properties controlling hydrogen environment embrittlement of cold worked 316 type austenitic stainless steel, Mater. Sci. Eng. A. 628 (2015) 252-261.
DOI: 10.1016/j.msea.2015.01.054
Google Scholar
[7]
D.K. Han, A.I. Hwang, W.J. Byeon, S.J. Noh, D.-W. Suh, Hydrogen permeation in cold-rolled high-Mn twinning-induced plasticity steels, Metall. Mater. Trans. A. 48 (2017) 5211-5216.
DOI: 10.1007/s11661-017-4318-0
Google Scholar
[8]
D. Li, R.P. Gangloff, J.R. Scully, Hydrogen trap states in ultrahigh-strength AERMET 100 Steel, Metall. Mater Trans. A. 35 (2004) 849-864. A. Macadre, N. Nakada, T. Tsuchiyama, S. Takaki, Critical grain size to limit the hydrogen-induced ductility drop in a metastable austenitic steel, Int. J. Hyd. Ener. 40 (2015) 10692-10703.
DOI: 10.1016/j.ijhydene.2015.06.111
Google Scholar
[9]
Y. Mine, N. Horita, Z. Horita, K. Takashima, Effect of ultrafine grain refinement of metastable austenitic stainless steel, Int. J. Hyd. Ener. 42 (2017) 15415-15425.
DOI: 10.1016/j.ijhydene.2017.04.249
Google Scholar
[10]
A.F. Padilha, R.L. Plaut, P.R. Rios, Annealing of cold-worked austenitic stainless steels, ISIJ International 43 (2000) 135-143.
DOI: 10.2355/isijinternational.43.135
Google Scholar
[11]
E.V. Melnikov, T.A. Kozlova, G.G. Maier, V.A. Vinokurov, E.G. Astafurova, Influence of rolling temperature on structure, phase composition and mechanical properties of austenitic steel Fe–17Сr–13Ni–3Mo, AIP Conf. Proc. 1683 (2015) 020149-1–020149-5.
DOI: 10.1063/1.4932839
Google Scholar
[12]
E. Melnikov, E. Astafurova, G. Maier, V. Moskvina, Effect of rolling on phase composition and microhardness of austenitic steels with different stacking-fault energies, AIP Conf. Proc. 1909 (2017) 020136-1-020136-4.
DOI: 10.1063/1.5013816
Google Scholar
[13]
S.A. Akkuzin, I.Yu. Litovchenko, N.A. Polekhina, A.N. Tyumentsev, Effect of thermomechanical treatment on structural-phase states and mechanical properties of metastable austenitic steel, AIP Conf. Proc. 1783 (2016) 020001-1-020001-4.
DOI: 10.1063/1.4966294
Google Scholar