Estimation of Impact Toughness Transition Temperatures of As-Quenched Steels

Article Preview

Abstract:

High strength and sufficient toughness are key requirements for modern high-performance structural steels. In an attempt to develop a suitable estimation of impact toughness transition temperatures for as-quenched steels, we investigated the determiners of low-temperature toughness with a group of thermomechanically rolled direct-quenched steels with varying martensite contents. These were produced by altering chemical composition, finish rolling temperature and reduction below the non-recrystallization temperature, i.e. austenite pancaking, and characterised in terms of microstructural constituents, grain size distributions, texture and fractography. Provided the finish rolling temperature is high enough to avoid the formation of granular bainite on subsequent cooling, high levels of austenite pancaking yield the best combinations of low-temperature toughness and strength by effectively refining the size of the coarsest grains and randomizing the texture. While absolutely no direct correlation is found within as-quenched steels between the impact toughness transition temperatures and yield strength alone, T28J and T50 do closely follow a dynamic reference toughness, i.e. the opening stress intensity factor defined by yield strength and the size of the coarsest grains in the effective grain size distribution. This parameter reflects the transition temperatures – the lower the temperature, the lower the reference toughness needed to cause a local brittle fracture. Finally, we show that the impact toughness transition temperatures T28J and T50 of as-quenched steels can be accurately estimated, irrespective of the test specimen orientation, by utilizing just the dynamic reference toughness and the fraction of {100} cleavage planes within ± 15° of the specimen notch plane.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

498-503

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Bingley, Effect of grain size and carbide thickness on impact transition temperature of low carbon structural steels, Mater. Sci. Technol. 17 (2001) 700–714.

DOI: 10.1179/026708301101510429

Google Scholar

[2] A.J. Kaijalainen, P.P. Suikkanen, T.J. Limnell, L.P. Karjalainen, J.I. Kömi, D.A. Porter, Effect of austenite grain structure on the strength and toughness of direct-quenched martensite, J. Alloys Compd. 577 (2013) S642–S648.

DOI: 10.1016/j.jallcom.2012.03.030

Google Scholar

[3] N. Isasti, D. Jorge-Badiola, M.L. Taheri, P. Uranga, Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part II: Impact Toughness, Metall. Mater. Trans. A. 45 (2014) 4972–4982.

DOI: 10.1007/s11661-014-2451-6

Google Scholar

[4] T. Jia, Y. Zhou, X. Jia, Z. Wang, Effects of Microstructure on CVN Impact Toughness in Thermomechanically Processed High Strength Microalloyed Steel, Metall. Mater. Trans. A. 48 (2016) 685–696.

DOI: 10.1007/s11661-016-3893-9

Google Scholar

[5] S. Pallaspuro, A. Kaijalainen, S. Mehtonen, J. Kömi, Z. Zhang, D. Porter, Effect of microstructure on the impact toughness transition temperature of direct-quenched steels, Mater. Sci. Eng. A. 712 (2018) 671–680.

DOI: 10.1016/j.msea.2017.12.037

Google Scholar

[6] S. Pillot, P. Pacqueau, An attempt to define a Charpy V-notched mastercurve to fit transition of ferritic steels, Eng. Fract. Mech. 135 (2015) 259–273.

DOI: 10.1016/j.engfracmech.2015.01.012

Google Scholar

[7] G. Sedlacek, M. Feldmann, B. Kühn, D. Tschickardt, S. Höhler, C. Müller, W. Hensen, N. Stranghöner, W. Dahl, P. Langenberg, S. Münstermann, J. Brozetti, J. Raoul, R. Pope, F. Bijlaard, Commentary and Worked examples to EN 1993-1-10 Material toughness and through thickness properties, and other toughness oriented rules in EN 1993, (2008).

Google Scholar

[8] J. Hannula, J. Kömi, D.A. Porter, M.C. Somani, A. Kaijalainen, P. Suikkanen, J.-R. Yang, S.-P. Tsai, Effect of Boron on the Strength and Toughness of Direct-Quenched Low-Carbon Niobium Bearing Ultra-High-Strength Martensitic Steel, Metall. Mater. Trans. A. (2017) 1–13.

DOI: 10.1007/s11661-017-4295-3

Google Scholar

[9] S. Pallaspuro, A. Kaijalainen, T. Limnell, D.A. Porter, Tempering of direct quenched low-alloy ultra-high-strength steel, Part II - Mechanical properties, in: Adv. Mater. Res., 2014: p.580–585.

DOI: 10.4028/www.scientific.net/amr.922.580

Google Scholar

[10] S. Pallaspuro, H. Yu, A. Kisko, D. Porter, Z. Zhang, Fracture toughness of hydrogen charged as-quenched ultra-high-strength steels at low temperatures, Mater. Sci. Eng. A. 688 (2017) 190–201.

DOI: 10.1016/j.msea.2017.02.007

Google Scholar

[11] S. Pallaspuro, A. Kaijalainen, S. Mehtonen, J. Kömi, Z. Zhang, D. Porter, Unpublished original research manuscript, (2018).

Google Scholar

[12] S. Kim, S. Lee, B.S. Lee, Effects of grain size on fracture toughness in transition temperature region of Mn–Mo–Ni low-alloy steels, Mater. Sci. Eng. A. 359 (2003) 198–209.

DOI: 10.1016/s0921-5093(03)00344-7

Google Scholar

[13] A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, A. Pineau, Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel, Metall. Mater. Trans. A. 35 (2004) 1039–1053.

DOI: 10.1007/s11661-004-1007-6

Google Scholar

[14] A. Ghosh, A. Ray, D. Chakrabarti, C.L. Davis, Cleavage initiation in steel: Competition between large grains and large particles, Mater. Sci. Eng. A. 561 (2013) 126–135.

DOI: 10.1016/j.msea.2012.11.019

Google Scholar

[15] A. Ghosh, P. Modak, R. Dutta, D. Chakrabarti, Effect of MnS inclusion and crystallographic texture on anisotropy in Charpy impact toughness of low carbon ferritic steel, Mater. Sci. Eng. A. 654 (2016) 298–308.

DOI: 10.1016/j.msea.2015.12.047

Google Scholar