[1]
T. Oshima, Y. Habara, K. Kuroda, Efforts to save nickel in austenitic stainless steels (transformations and microstructures), Isij International, 47(3) (2007) 359-364.
DOI: 10.2355/isijinternational.47.359
Google Scholar
[2]
A.S. Hamada, L.P. Karjalainen, R.D.K. Misra, et al. Contribution of deformation mechanisms to strength and ductility in two Cr-Mn grade austenitic stainless steels, Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 559(3) (2013) 336-344.
DOI: 10.1016/j.msea.2012.08.108
Google Scholar
[3]
H. Barman, A.S. Hamada, T. Sahu, et al. A stacking fault energy perspective into the uniaxial tensile deformation behavior and microstructure of a Cr-Mn austenitic steel, Metallurgical & Materials Transactions A, 45(4) (2014) 1937-1952.
DOI: 10.1007/s11661-013-2175-z
Google Scholar
[4]
K.H. Lo, C.H. Shek, W.W. Zhang, et al. Thermal, magnetic and composition analyses of the reverse transformation of intermetallic sigma phase to ferrite, Journal of Materials Science, 45 (7) (2010) 1790-1795.
DOI: 10.1007/s10853-009-4156-6
Google Scholar
[5]
T. Michler, J. Naumann, S. Weber, et al. S-N fatigue properties of a stable high-aluminum austenitic stainless steel for hydrogen applications, International Journal of Hydrogen Energy, 38(23) (2013) 9935-9941.
DOI: 10.1016/j.ijhydene.2013.05.145
Google Scholar
[6]
G. Piatti, P. Schiller, Thermal and mechanical properties of the Cr-Mn-(Ni-free) austenitic steels for fusion reactor applications, Journal of Nuclear Materials, 141(28) (1986) 417-426.
DOI: 10.1016/s0022-3115(86)80076-9
Google Scholar
[7]
A. Hedayati, A. Najafizadeh, A. Kermanpur, et al. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel, Journal of Materials Processing Tech, 210(8) (2010) 1017-1022.
DOI: 10.1016/j.jmatprotec.2010.02.010
Google Scholar
[8]
A.I.Z. Farahat, T.A. El-Bitar, Effect of Nb, Ti and cold deformation on microstructure and mechanical properties of austenitic stainless steels, Materials Science & Engineering A, 527(16) (2010) 3662-3669.
DOI: 10.1016/j.msea.2010.02.064
Google Scholar
[9]
W. Ozgowicz, A. Kurc, The effect of the cold rolling on the structure and mechanical properties in austenitic stainless steels type 18-8, Archives of Materials Science & Engineering, 38(1) (2009) 527-534.
Google Scholar
[10]
A. Kurc, Z. Stoklosa, Some mechanical and magnetic properties of cold rolled X5CrNi18-8 stainless steel, Archives of Materials Science & Engineering, 34(2) (2008).
Google Scholar
[11]
J. Talonen, H. Hänninen, Damping properties of austenitic stainless steels containing strain-induced martensite, Metallurgical & Materials Transactions A, 35(8) (2004) 2401-2406.
DOI: 10.1007/s11661-006-0220-x
Google Scholar
[12]
M.C. Park, K.N. Kim, J.Y. Yun, et al. Strain-Induced ε / α ' Martensitic Transformation Behavior and Solid Particle Erosion Resistance of Austenitic Fe-Cr-C-Mn/Ni Alloys, Tribology Letters, 54(1) (2014) 51-58.
DOI: 10.1007/s11249-014-0306-3
Google Scholar
[13]
A. Hedayati, A. Najafizadeh, A. Kermanpur, et al. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel, Journal of Materials Processing Tech, 210(8) (2010) 1017-1022.
DOI: 10.1016/j.jmatprotec.2010.02.010
Google Scholar
[14]
M. Mahmoudiniya, S. Kheirandish, M. Asadiasadabad, The effect of cold rolling on microstructure and mechanical properties of a new Cr-Mn austenitic stainless steel in comparison with aisi 316 stainless steel, Transactions of the Indian Institute of Metals, (2016) 1-9.
DOI: 10.1007/s12666-016-0921-9
Google Scholar