Effect of the Quenching Temperature on the Phase Composition and Youngʹs Modulus of Corrosion-Resistant and Biocompatible Titanium Alloys

Article Preview

Abstract:

The relationship between the phase composition and the Young’s modulus in quenched PT-7M, Ti-6Al-7Nb, BT16 titanium alloys has been studied using the structural analysis, thermodynamic calculations in the Thermo-Calc software and micro-indentation. It is found that the nature of the change in the Young’s modulus in the investigated titanium alloys after quenching from the two-phase α+β-region depends on the chemical composition of the alloy, which determines the nature of the observed metastable phases (α', α", ω, β). The correlation between the extreme change in the Young’s modulus from the quenching temperature and the so-called interatomic bonding force (Fb) calculated from the electronic structure parameters of the α, α', β phases was shown for the Ti-6Al-7Nb alloy. The relationship between the limits of the Young’s modulus of the investigated alloys during quenching with the level of their alloying with α-and β-stabilizers is shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

309-314

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, Journal of the mechanical behavior of biomedical materials. I (2008) 30-42.

DOI: 10.1016/j.jmbbm.2007.07.001

Google Scholar

[2] M. Geeta, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopedic implants – A review. Progress in Materials Science. 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[3] A. Illarionov, S. Belikov, S. Grib, A. Yurovskikh, Metallic materials for medical use, MATEC Web Conferences 132. 03003 (2017).

DOI: 10.1051/matecconf/201713203003

Google Scholar

[4] E.W. Collings, The Physical Metallurgy of Titanium Alloys, Metals Park, OH: American Society for Metals, (1984).

Google Scholar

[5] Y.T. Lee, G. Welsch, Young's Modulus and Damping Capacity of Ti-6Al-4V Alloy as a Function of Heat-Treatment and Oxygen Concentration, Materials Science and Engineering. A128 (1990) 77-89.

DOI: 10.1016/0921-5093(90)90097-m

Google Scholar

[6] B.A. Kolachev, I.S. Polkin, V.D. Talalayev, Titanium alloys of different countries, Moscow, VILS, (2000).

Google Scholar

[7] M. Semlitsch, F. Stabu, H. Weber, Titanium-aluminium-niobium alloy, development for biocompatible, high strength surgical implants, Biomedizinische Technik, Biomedical Engineering.  30(12) (1985) 334–339.

DOI: 10.1515/bmte.1985.30.12.334

Google Scholar

[8] A.V. Karlov, V.P. Shakhov, Systems of external fixation and regulator mechanisms of optimal biomechanics, SST, Tomsk. (2001).

Google Scholar

[9] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[10] A.A. Ilyin, B.A. Kolachev I.S. Polkin, Titanium alloys. Composition, structure, properties, Moscow, VILS-MATI, (2009).

Google Scholar

[11] R. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, The Material Information Society, (1994).

Google Scholar

[12] A.G. Illarionov., M.S. Karabanalov, S.I. Stepanov, Formation of structure, phase composition and properties in biocompatible titanium alloy due to heat treatment, Metal Science and Heat Treatment. 52(9-10) (2011) 481-486.

DOI: 10.1007/s11041-010-9304-8

Google Scholar

[13] A. Illarionov, M. Karabanalov, A. Korelin, S. Novokreschenov, Quenching temperature influence on elastic and hardness behavior in a biocompatible Ti-based alloy, MATEC Web Conferences 132. 03008 (2017).

DOI: 10.1051/matecconf/201713203008

Google Scholar

[14] Li You, Xiping Song, A study of low Young's modulus Ti-Nb-Zr alloys using d electrons alloy theory, Scripta Materialia. 67 (2012) 57-60.

DOI: 10.1016/j.scriptamat.2012.03.020

Google Scholar

[15] J.C. Slater, Atomic shielding constants, Physical Review. 36 (1930) 57-64.

Google Scholar

[16] M. Abdel-Hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Materialia. 55(5) (2006) 477-480.

DOI: 10.1016/j.scriptamat.2006.04.022

Google Scholar

[17] M. Morinaga, Alloy design based on molecular orbital method, Materials Transactions. 57(3) (2016) 213-226.

DOI: 10.2320/matertrans.m2015418

Google Scholar

[18] V.N. Moiseev, Yigh-strength titanium alloy VT16 for manufacturing fasteners by method of cold deformation, Metal Science and Heat Treatment. 43(1-2) (2001) 73-77.

Google Scholar

[19] A.A. Popov, A.G. Illarionov, S.I. Stepanov, O.M. Ivasishin, Effect of quenching temperature on structure and properties of titanium alloy: Physicomechanical properties, Physics of Metals and Metallography. 115(5) (2014) 517-522.

DOI: 10.1134/s0031918x1405007x

Google Scholar

[20] A.A. Popov, A.G. Illarionov, S.I. Stepanov, O.A. Elkina, O.M. Ivasishin, Effect of quenching temperature on structure and properties of titanium alloy: Structure and phase composition, Physics of Metals and Metallography. 115(5) (2014) 507-516.

DOI: 10.1134/s0031918x14050068

Google Scholar