[1]
M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, Journal of the mechanical behavior of biomedical materials. I (2008) 30-42.
DOI: 10.1016/j.jmbbm.2007.07.001
Google Scholar
[2]
M. Geeta, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopedic implants – A review. Progress in Materials Science. 54 (2009) 397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[3]
A. Illarionov, S. Belikov, S. Grib, A. Yurovskikh, Metallic materials for medical use, MATEC Web Conferences 132. 03003 (2017).
DOI: 10.1051/matecconf/201713203003
Google Scholar
[4]
E.W. Collings, The Physical Metallurgy of Titanium Alloys, Metals Park, OH: American Society for Metals, (1984).
Google Scholar
[5]
Y.T. Lee, G. Welsch, Young's Modulus and Damping Capacity of Ti-6Al-4V Alloy as a Function of Heat-Treatment and Oxygen Concentration, Materials Science and Engineering. A128 (1990) 77-89.
DOI: 10.1016/0921-5093(90)90097-m
Google Scholar
[6]
B.A. Kolachev, I.S. Polkin, V.D. Talalayev, Titanium alloys of different countries, Moscow, VILS, (2000).
Google Scholar
[7]
M. Semlitsch, F. Stabu, H. Weber, Titanium-aluminium-niobium alloy, development for biocompatible, high strength surgical implants, Biomedizinische Technik, Biomedical Engineering. 30(12) (1985) 334–339.
DOI: 10.1515/bmte.1985.30.12.334
Google Scholar
[8]
A.V. Karlov, V.P. Shakhov, Systems of external fixation and regulator mechanisms of optimal biomechanics, SST, Tomsk. (2001).
Google Scholar
[9]
W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[10]
A.A. Ilyin, B.A. Kolachev I.S. Polkin, Titanium alloys. Composition, structure, properties, Moscow, VILS-MATI, (2009).
Google Scholar
[11]
R. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, The Material Information Society, (1994).
Google Scholar
[12]
A.G. Illarionov., M.S. Karabanalov, S.I. Stepanov, Formation of structure, phase composition and properties in biocompatible titanium alloy due to heat treatment, Metal Science and Heat Treatment. 52(9-10) (2011) 481-486.
DOI: 10.1007/s11041-010-9304-8
Google Scholar
[13]
A. Illarionov, M. Karabanalov, A. Korelin, S. Novokreschenov, Quenching temperature influence on elastic and hardness behavior in a biocompatible Ti-based alloy, MATEC Web Conferences 132. 03008 (2017).
DOI: 10.1051/matecconf/201713203008
Google Scholar
[14]
Li You, Xiping Song, A study of low Young's modulus Ti-Nb-Zr alloys using d electrons alloy theory, Scripta Materialia. 67 (2012) 57-60.
DOI: 10.1016/j.scriptamat.2012.03.020
Google Scholar
[15]
J.C. Slater, Atomic shielding constants, Physical Review. 36 (1930) 57-64.
Google Scholar
[16]
M. Abdel-Hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Materialia. 55(5) (2006) 477-480.
DOI: 10.1016/j.scriptamat.2006.04.022
Google Scholar
[17]
M. Morinaga, Alloy design based on molecular orbital method, Materials Transactions. 57(3) (2016) 213-226.
DOI: 10.2320/matertrans.m2015418
Google Scholar
[18]
V.N. Moiseev, Yigh-strength titanium alloy VT16 for manufacturing fasteners by method of cold deformation, Metal Science and Heat Treatment. 43(1-2) (2001) 73-77.
Google Scholar
[19]
A.A. Popov, A.G. Illarionov, S.I. Stepanov, O.M. Ivasishin, Effect of quenching temperature on structure and properties of titanium alloy: Physicomechanical properties, Physics of Metals and Metallography. 115(5) (2014) 517-522.
DOI: 10.1134/s0031918x1405007x
Google Scholar
[20]
A.A. Popov, A.G. Illarionov, S.I. Stepanov, O.A. Elkina, O.M. Ivasishin, Effect of quenching temperature on structure and properties of titanium alloy: Structure and phase composition, Physics of Metals and Metallography. 115(5) (2014) 507-516.
DOI: 10.1134/s0031918x14050068
Google Scholar