[1]
B. Sirok, B. Blagojević, P. Bullen, Mineral Wool: Production and Properties, Woodhead Publishing, Cambridge, (2008).
Google Scholar
[2]
M.J. Lehtinen, Industrial Minerals and Rocks, in: Wolfgang Derek Maier, Mineral Deposits of Finland, Elsevier Science Publishing Co Inc, United States, (2015) 685-710.
DOI: 10.1016/b978-0-12-410438-9.00026-1
Google Scholar
[3]
A. Nurtan Esmen, Y. Yehia Hammad, Morton Corn Diane Whittier, Nancy Kotsko, Martin Haller, A. Russell Kahn, Exposure of employees to man-made mineral fibers: Mineral wool production, Environmental Research. Vol 15, Issue 2 (1978) 262-277.
DOI: 10.1016/0013-9351(78)90103-2
Google Scholar
[4]
T. Enzenbach, R. Gurtner, Increase the energy efficiency of the cupola melting process in the iron foundry, Gefahrstoffe reinhaltung der luft. Vol. 77, Issue 11-12 (2017) 512-516.
Google Scholar
[5]
R.E., Aristizabal, P.A., Perez, S., Katz., Perez, M.E., Bauer, Studies of a quenched cupola, International journal of metalcasting. Vol. 8, Issue 3 (2014) 13-22.
Google Scholar
[6]
A. Gradowski, The numerical simulation of the heating sub-areas of a traditional cupola and heat losses to the environment, Archives of metallurgy and materials. Vol. 54, Issue 4 (2009) 1173-1182.
Google Scholar
[7]
R.T. Qi, D.M. Song, Melting control of 3 t/h spacious twin-tuyeres cold blast cupola, Zhuzao/Foundry Vol. 58, Issue 12, (2009) 1273-1275.
Google Scholar
[8]
M. Lemperle, The Cupola Furnace in Foundries and Steel Plants, Giesserei (Germany), 86, pp.123-128.
Google Scholar
[9]
Loy, David, Taking control of the cupola, Materials World. Vol. 7, Issue 8 (1999) 475-477.
Google Scholar
[10]
H. Ebrahimi, A. Zamaniyan, J.S.S. Mohammadzadeh, A.A. Khalili, Zonal modeling of radiative heat transfer in industrial furnaces using simplified model for exchange area calculation, Applied Mathematical Modelling. 37 (2013) 8004-8015.
DOI: 10.1016/j.apm.2013.02.053
Google Scholar
[11]
R. Tucker, J. Ward, Identifying and quantifying energy savings on fired plant using low cost modelling techniques, Appl. Enrg. 89 (2012) 127-132.
DOI: 10.1016/j.apenergy.2011.01.061
Google Scholar
[12]
V. Sardeshpande, U.N. Gaitonde, R. Banerjee, Model based energy benchmarking for glass furnace, Energy Convers Manag. 48 (2007) 2718-2738.
DOI: 10.1016/j.enconman.2007.04.013
Google Scholar
[13]
B.M., Kerbel, A.Y. Ageev, A.Y. Payusov, Determination of the gradientless zone parameters in the working chamber of a shaft furnace, Russian Metallurgy (Metally). Vol. 7, Issue 6 (2015) 438-442.
DOI: 10.1134/s0036029515060087
Google Scholar
[14]
W. Zhao, Q. Wang, H. X. Liu, Z.S. Zou, Technical calculation and analysis of MSW incineration with co-current and counter-current shaft furnace, Dongli Gongcheng Xuebao/Journal of Chinese Society of Power Engineering. Vol. 32, Issue 7 (2012) 562-568.
Google Scholar
[15]
T. Bluhm-Drenhaus, E. Simsek, S. Wirtz, V. Scherer, A coupled fluid dynamic-discrete element simulation of heat and mass transfer in a lime shaft kiln, Chemical Engineering Science. Vol. 65, Issue 9 (2010) 2821-2834.
DOI: 10.1016/j.ces.2010.01.015
Google Scholar
[16]
S. Paynter, P. Crew, E. Blakelock, G. Hatton, Spinel-rich slag and slag inclusions from a bloomery smelting and smithing experiment with a sideritic ore, Historical Metallurgy. Vol. 49, Issue 2 (2015) 126-143.
Google Scholar
[17]
G.R. Thomas, T.P. Young, The determination of bloomery furnace mass balance and efficiency, Geological Society Special Publication. 165 (1999) 155-164.
DOI: 10.1144/gsl.sp.1999.165.01.12
Google Scholar
[18]
S. Nag, S. Basu, A.B. Yu, A static approach towards coke collapse modelling in blast furnace, Ironmaking and Steelmaking. Vol. 36, Issue 7 (2009) 509-514.
DOI: 10.1179/174328109x443338
Google Scholar
[19]
R. Leth-Miller, A.D. Jensen, P. Glarborg, L.M. Jensen, P.B. Hansen, S.B. Jorgensen, Investigation of a Mineral Melting Cupola Furnace. Part II. Mathematical Modeling, Industrial and Engineering Chemistry Research. Vol. 42, Issue 26 (2003) 6880-6892.
DOI: 10.1021/ie030770u
Google Scholar
[20]
Matyukhin, V. I., Matyukhin, O. V., Matyukhina, A. V., Aspects of the Thermal Performance of a Cupola with a Closed Top for Remelting Mineral-Bearing Raw Materials. Refractories and Industrial Ceramics. Vol. 56, Issue 5, (2016) 465-469.
DOI: 10.1007/s11148-016-9870-4
Google Scholar
[21]
S.B. Kuang, Z.Y. Li, D.L. Yan, Y.H. Qi, A.B. Yu, Numerical study of hot charge operation in ironmaking blast furnace, Minerals Engineering. 63 (2014) 45-56.
DOI: 10.1016/j.mineng.2013.11.002
Google Scholar