Morphology and Mechanical Properties of Poly(Lactic Acid) with Propylene-Ethylene Copolymer and α-Cellulose

Article Preview

Abstract:

This work studied the improvement of poly (lactic acid) (PLA) properties by adding propylene-ethylene copolymer (PEC) and α-cellulose (AC). The PLA blends and composites were melt mixed by an internal mixer and molded by compression method. The morphological analysis observed the phase separation of PLA/PEC blends due to minor PEC phase dispersed as spherical shape in PLA phase, indicating a poor interfacial adhesion between PLA and PEC phases. The incorporation of AC did not improve the compatibility of polymer blends. Young’s modulus and tensile strength of PLA blends reduced with increasing amount of PEC because the elastics of ethylene molecules in PEC structure. Young’s modulus of PLA/PEC/AC composites increased with increasing AC contents. The stress at break of the PLA/PEC blends was improved with the presence of AC. The strain at break of PLA/PEC blends increased with increasing PEC contents, and the presence of AC showed the decrease of strain at break of PLA/PEC blends.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-204

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.P. Arrieta, E. Fortunati, F.D ominici, J. López, and J.M. Kenny: Carbohydr. Polym. Vol. 121 (2015), p.265.

Google Scholar

[2] L.Q. Xu, Y.Q. Zhao and X.F. Peng: SPE ANTEC™ Indianapolis 2016, p.239.

Google Scholar

[3] K. Piekarska, P. Sowinski, E. Piorkowska, Md.M.-Ul. Haque and M. Pracella: Composites: Part A Vol. 82 (2016), p.34.

Google Scholar

[4] N. Zhang and X. Lu: Polym. Test. Vol. 56 (2016), p.354.

Google Scholar

[5] P. Ma, D.G. Hristova-Bogaerds, J.G.P. Goossens, A.B. Spoelstra, Y. Zhang and P.J. Lemstra: Eur. Polym. J. Vol. 48 (2012), p.146.

Google Scholar

[6] P. Xu, P. Ma, M. Hoch, E. Arnoldi, X. Cai, W. Dong and M. Chen: Polym. Degrad. Stab. Vol. 129 (2016), p.328.

Google Scholar

[7] D.H. Han, M.C. Choi, J.H. Jeong, K.M. Choi and H.S. Kim: Composite Interfaces Vol. 23 (2016), p.771.

Google Scholar

[8] S.W. Lim, M.C. Choi, J.H. Jeong, E.Y. Park and C.S. Ha: Composite Interfaces Vol. 23 (2016), p.807.

Google Scholar

[9] V.H. Sangeetha, T.O. Varghese and S.K. Nayak: Polym. Eng. Sci. Vol. 56 (2016), p.669.

Google Scholar

[10] X. Lu, J. Zhao, X. Yang and P. Xiao: Polym. Test. Vol. 60 (2017), p.58.

Google Scholar

[11] Y. Deng and N.L. Thomas: Eur. Polym. J. Vol. 71 (2015), p.534.

Google Scholar

[12] A.N. Frone, S. Berlioz, J.F. Chailan and D.M. Panaitescu: Carbohydr. Polym. Vol. 91 (2013), p.377.

Google Scholar

[13] J.H. Wu , M.C. Kuo, C.W. Chen, C.W. Chen, Y.L. Hsu, P.H. Kuan, K.Y. Lee, K.T. Fang and J.H. He: Polym. Plast. Technol. Eng. Vol. 52 (2013), p.877.

Google Scholar

[14] M.K. Mohamad Haafiz, A. Hassan, Z. Zakaria, I.M. Inuwa, M.S. Islamd, M. Jawaid: Carbohydr. Polym. Vol. 98 (2013), p.139.

Google Scholar

[15] A. Awal, M. Rana and M. Sain: Mechanics of Materials Vol. 80 (2015), p.87.

Google Scholar

[16] K.M. Zakir Hossain, M.S. Hasan, D. Boyd, C.D. Rudd, I. Ahmed and W. Thielemans: Biomacromolecules Vol. 15 (2014), p.1498.

Google Scholar

[17] A.M. Panicker, K. A. Rajesh and T.O. Varghese: Iran. Polym. J. Vol. 26 (2017), p.125.

Google Scholar