Determination of Risk of Radioactive in Chemical Fertilizer Using Gamma Ray Spectrometry

Article Preview

Abstract:

Fertilizer is one factor that is very influential in the success of agriculture. There are two types of fertilizer circulating in Indonesia today that is organic fertilizer and inorganic fertilizer (chemical). The used of chemical fertilizers allows the distribution of natural radionuclides into the environment. This study was conducted to determine the risk of the radioactive index of chemical fertilizer in Indonesia using gamma-ray spectrometry. There are 6 types of samples of fertilizers ie urea, ZA, KCL, NPK, TSP, and Phosphate. Radioactive risk index value that is found in the overall sample of fertilizer is below the limit recommended by the ICRP.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-25

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chauhan, P., Chauhan, R. P., & Gupta, M., Estimation of naturally occurring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques. Microchemical Journal, 106, (2013) 73-78.

DOI: 10.1016/j.microc.2012.05.007

Google Scholar

[2] Khater, A. E. M., AL-Sewaidan, H. A., Radiation exposure due to agricultural uses of phosphate fertilizer. Journals of Radiation Measurement, (2008).

DOI: 10.1016/j.radmeas.2008.04.084

Google Scholar

[3] Jones US. 1982. Fertilizer and soil fertility. Reston Pub.Co.Inc. Reston-Virginia: A Prentice-Hall Company.

Google Scholar

[4] Roni, N. G. K. N. M., Witariadi., N. N. Candraasih. K., & N. W. Siti., Pemanfaatan bakteri pelarut fosfat untuk meningkatkan produktivitas kudzu tropika (Pueraria Phaseoloides Benth. Pastura, Vol. 3, No. 1, (2006) 13-16.

Google Scholar

[5] El-Taher, A., & Althoyaib, S. S., Natural radioactivity levels and heavy metals in chemical and organic fertilizer used in the Kingdom of Saudi Arabia. Applied Radiation and Isotopes, 70, (2012), 290-295.

DOI: 10.1016/j.apradiso.2011.08.010

Google Scholar

[6] Lambert, R., Grant, C., Sauve, C., Cadmium and zinc in soil solution extracts following the application of phosphate fertilizer. Sci. Total Environ, 378, (2007) 293-305.

DOI: 10.1016/j.scitotenv.2007.02.008

Google Scholar

[7] Udiyani, PM., Sebaran zat radioaktif di lingkungan dan hubungannya dengan prilaku petani dalam pengguna pupuk (disertasi). Bogor: Institut Pertanian Bogor, Program Pascasarjana, (2002).

DOI: 10.19081/jpsl.5.2.180

Google Scholar

[8] Roselli, C., Desideri, D., Meli, M.A., & Feduzi, L., Sequential extraction for the leachability evaluation of phosphate fertilizers. Microchemical Journal, 95, (2010) 373-376.

DOI: 10.1016/j.microc.2010.02.020

Google Scholar

[9] Indri Setiani., Mohammad Munir., K. Sofian Firdausi., Penentuan konsentrasi aktivitas uranium dari industri fosfat menggunakan detektor ZnS. Berkala Fisika, Vol. 9, No.2, (2006) 290-295.

Google Scholar

[10] Rehman, S., Imtiaz, N., Faheem, M., & Matiullah., Determination of U-238 contents in ore samples using CR-39 based radon dosimeter disequilibrium case. Radiation Measurement, 41, (2006) 471-476.

DOI: 10.1016/j.radmeas.2005.10.002

Google Scholar

[11] Uosif, M. A. M., Mostafa, A. M. A., Elsaman, Reda., & Moustafa, El-Sayed., Natural activity levels and radiological hazards indices of chemical fertilizers commonly used in Upper Egypt. Journal of Radiation Research and Applied Science, (2014).

DOI: 10.1016/j.jrras.2014.07.006

Google Scholar

[12] Camacho, A., Devesa, R., Valles. I., Serrano, I., Soler, I., Blazquez, S., at al., Distribution of uranium isotopes in surface water of the lobregat river basin (Notheast Spain). Journal of Environmental Radioactivity, Vol 101, (2010) 1048-1054.

DOI: 10.1016/j.jenvrad.2010.08.005

Google Scholar

[13] Mohanty, A. S., Segupta, D., Das, S. K., Saha, S. K., & Van, K. V., Natural radioactivity and radiation exposure in the high background area at Chhatarpur beach placer deposit of Orissa, India. Journals of Environmental Radioactivity, 75, (2004) 15-33.

DOI: 10.1016/j.jenvrad.2003.09.004

Google Scholar

[14] Alharby, W. R., Natural Radioactivity and dose assessment for brand of chemical and organic fertilizers used in Saudi Arabia. Journal of Modern Physics.Vol 4. (2013) 344-348.

DOI: 10.4236/jmp.2013.43047

Google Scholar

[15] UNSCEAR., United Nations Scientific Committee on the Effect of Atomic Radiation. Exposure from natural radiation sources. New York; United Nation, (2000).

DOI: 10.18356/fa7a3c47-en

Google Scholar

[16] N.K. Ahmed and A. M. El-Arabi., Natural Radioactivity in Farm Soil and Phosphate Fertilizer and Its Environmental Implication In Qena Governorate, Upper Egypt. Journal of Environmental Radioactivity. Vol. 84. No. 1, (2005).

DOI: 10.1016/j.jenvrad.2005.04.007

Google Scholar

[17] C. H. Saueia, B. P. Mazzilli, and D. I. T. Favaro., Natural Radioactivity in Phosphogypsum and Fertilizer in Brazil. Journal of Radioanalytical and Nuclear Chemistry. Vol. 264. No. 2, (2005).

Google Scholar

[18] N.N. Jibiril and K.P Fasae., Activity Concentration of 226Ra, 232Th and 40K in Brands of Fertilizer Used in Nigeria. Radiation Protection Dosimetry. Vol. 148. No.1, (2012).

DOI: 10.1093/rpd/ncq589

Google Scholar

[19] ICRP., International Commission on Radiological Protection the 1990-1991 Recommendation of the International Commission on Radiological Protection, Publication 60. Pergamon. Oxford, (1990).

DOI: 10.1016/0306-4549(92)90053-e

Google Scholar