Synthesis of Silver-Doped Titanium Dioxide Nanotubes by Single-Step Anodization for Enhanced Photodegradation of Acid Orange 52

Article Preview

Abstract:

Silver-doped TiO2 nanotubes (Ag-TiNTs) were synthesized in a top-down approach by single-step anodization of titanium sheets. The highly-ordered array of Ag-TiNTs was confirmed by scanning electron microscopy with an average inner diameter of 41.28 nm and a wall thickness of 35.38 nm. Infrared spectroscopy confirmed the presence of O-Ti-O bonds. Analysis of the X-ray powder diffraction profiles showed the characteristic peaks for anatase and titanium for both pristine TiNTs and Ag-TiNTs. Ag-doping caused no observed changes in the crystalline structure of pristine TiNTs. High-definition X-ray fluorescence spectroscopy revealed that the synthesized Ag-TiNTs have 0.05 wt% Ag-loading. Even at low Ag-loading, the Ag-TiNTs were shown to be photo-active, achieving 10.13% degradation of Acid Orange 52 under UV illumination after 120 min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-153

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Anas, D. Suk, K. Mahmoud, H. Park, and A. Abdel-wahab: Mater. Sci. Semicond. Process. Vol. 41 (2016), p.209–218.

Google Scholar

[2] M. Khaki, M. Shafeeyan, A. Raman, and W. Daud: J. Environ. Manage. Vol. 198 (2017), p.78–94.

Google Scholar

[3] W. Min, C. Yinsheng, N. Chao, D. Mingyan, and D. Duo: J. Rare Earths. Vol. 31 (2013), p.878–884.

Google Scholar

[4] J. Hernandez, S. Coste, A. Murillo, F. Romo, and A. Kassiba: J. Alloys Compd. Vol. 710 (2017), p.355–363.

Google Scholar

[5] X. Cheng, X. Yu, Z. Xing, and J. Wan: Energy Procedia. Vol. 16 (2012), p.598–605.

Google Scholar

[6] H. Sun, S. Wang, H. M. Ang, M. Tadé, and Q. Li: Chem. Eng. J. Vol. 162 (2010), p.437–447.

Google Scholar

[7] R. Nainani, P. Thakur, and C. Manohar: J. Mater. Sci. Eng. Vol. B (2012), p.52–58.

Google Scholar

[8] M. Abdullah and S. K. Kamarudin: Renew. Sustain. Energy Rev. Vol. 76 (2017), p.212–225.

Google Scholar

[9] M. Szkoda, A. Lisowska-oleksiak, K. Grochowska, L. Skowronski, J. Karczewski, and K. Siuzdak: Appl. Surf. Sci. Vol. 381 (2016), p.36–41.

DOI: 10.1016/j.apsusc.2015.12.126

Google Scholar

[10] T. Le, N. Ton, V. Tran, N. Nam, and T. Vu: J. Nanomater. Vol. 2017 (2017), pp.1-7.

Google Scholar

[11] X. Luan and Y. Wang: Mater. Sci. Semicond. Process. Vol. 25 (2014), p.43–51.

Google Scholar

[12] C. Schneider, W. Rasband, and K. Eliceiri: Nat. Methods. Vol. 9 (2012), pp.671-675.

Google Scholar

[13] A. Elsanousi, J. Zhang, H. Fadlalla, F. Zhang, H. Wang, X. Ding, Z. Huang, and C, Tang: J. Mater. Sci. Vol. 43 (2008), p.7219–7224.

DOI: 10.1007/s10853-008-2947-9

Google Scholar

[14] J. Chen, H. Wang, X. Wei, and L. Zhu: Mater. Res. Bull. Vol. 47 (2012), p.3747–3752.

Google Scholar

[15] M. Hatami, K. Rao, M. Ahmadipour, and V. Rajendar: Adv. Sci. Eng. Med. Vol. 5 (2013), pp.1-5.

Google Scholar

[16] S. Mogal, V. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P. Joshi, and D. Shah: Ind. Eng. Chem. Res., Vol. 53 (2014), p.5749–5758.

DOI: 10.1021/ie404230q

Google Scholar

[17] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill: Sci. Rep. Vol. 4 (2018), p.1–8.

Google Scholar

[18] A. Burns, G. Hayes, W. Li, J. Hirvonen, J. D. Demaree, and S. Shah: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. Vol. 111 (2004), p.150–155.

Google Scholar