[1]
A. Toprak and O. Tigli, Piezoelectric energy harvesting: State-of-the-art and challenges,, Appl. Phys. Rev., vol. 1, no. 3, p.031104, (2014).
DOI: 10.1063/1.4896166
Google Scholar
[2]
R. Ahmed, F. Mir, and S. Banerjee, A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity,, Smart Mater. Struct., vol. 26, no. 8, p.085031, (2017).
DOI: 10.1088/1361-665x/aa7bfb
Google Scholar
[3]
K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, Powering MEMS portable devices - A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems,, Smart Mater. Struct., vol. 17, no. 4, (2008).
DOI: 10.1088/0964-1726/17/4/043001
Google Scholar
[4]
S. R. Anton and H. A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006),, Smart Mater. Struct., vol. 16, no. 3, pp. R1–R21, (2007).
DOI: 10.1088/0964-1726/16/3/r01
Google Scholar
[5]
H. Li, C. Tian, and Z. D. Deng, Energy harvesting from low frequency applications using piezoelectric materials,, Appl. Phys. Rev., vol. 1, no. 4, p.0–20, (2014).
Google Scholar
[6]
Frost & Sullivan, Advances in energy harvesting technologies. (2007).
Google Scholar
[7]
F. Invernizzi, S. Dulio, M. Patrini, G. Guizzetti, and P. Mustarelli, Energy harvesting from human motion: materials and techniques,, Chem. Soc. Rev., vol. 45, no. 20, p.5455–5473, (2016).
DOI: 10.1039/c5cs00812c
Google Scholar
[8]
H. A. Sodano et al., Use of piezoelectric energy harvesting devices for charging batteries,, in SPIE Vol. 5050, 2003, p.101–108.
Google Scholar
[9]
S. Priya and D. J. Inman, Energy harvesting technologies. (2009).
Google Scholar
[10]
A. Delnavaz and J. Voix, Flexible piezoelectric energy harvesting from jaw movements,, Smart Mater. Struct., vol. 23, no. 10, p.105020, (2014).
DOI: 10.1088/0964-1726/23/10/105020
Google Scholar
[11]
H. A. Sodano, J. Lloyd, and D. J. Inman, An experimental comparison between several active composite actuators for power generation,, Smart Mater. Struct., vol. 15, no. 5, p.1211–1216, (2006).
DOI: 10.1088/0964-1726/15/5/007
Google Scholar
[12]
H. A. Sodano, D. J. Inman, and G. Park, Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries,, J. Intell. Mater. Syst. Struct., vol. 16, no. 10, p.799–807, (2005).
DOI: 10.1177/1045389x05056681
Google Scholar
[13]
a Erturk, O. Bilgen, M. Fontenille, and I. D. J, Piezoelectric energy harvesting from macro-fiber composites with an application to morphing wing aircrafts,, Proc. 19th Int. Conf. Adapt. Struct. Technol., (2008).
Google Scholar
[14]
S. Anton and D. Inman, Vibration energy harvesting for unmanned aerial vehicles,, … Mater. …, vol. 6928, p.1–10, (2008).
Google Scholar
[15]
J. B. D. L. H. M. W. Keats WilkieRobert G. BryantRobert L. FoxRichard F. HellbaumJames W. HighAntony Jalink, Piezoelectric macro-fiber composite actuator and method for making same,, (1999).
Google Scholar
[16]
S. Roundy, P. K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes,, Comput. Commun., vol. 26, no. 11, p.1131–1144, (2003).
DOI: 10.1016/s0140-3664(02)00248-7
Google Scholar
[17]
N. E. DuToit, B. L. Wardle, and S. G. Kim, Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters,, Integr. Ferroelectr., vol. 71, p.121–160, (2005).
DOI: 10.1080/10584580590964574
Google Scholar