[1]
D. R. Delgado Sobrino, O. Moravčík, D. Cagáňová, P. Košťál, Hybrid Iterative Local Search Heuristic with a Multiple Criteria Approach for the Vehicle Routing Problem. Advanced Materials Research: International Conference on Manufacturing Science and Technology (ICMST 2011), 383–390(2012), 4560–4567.
DOI: 10.4028/www.scientific.net/amr.383-390.4560
Google Scholar
[2]
Y. M. Bazhenov, Technologiia betona, Izdatelstvo ASV, Moscow, (2002).
Google Scholar
[3]
Y. M. Bazhenov, Sposoby opredeleniya sostava betona razlichnyh vidov, Stroyizdat, Moscow, (1975).
Google Scholar
[4]
L. I. Dvorkin, O. L. Dvorkin Raschetnoe prognozirovanie svoistv i proektirovanie sostavov betonov, Infra-Ingineer, Moscow, (2016).
Google Scholar
[5]
L. I. Dvorkin, V. I. Goc, O. L., Dvorkin, Ispytanie betnov i rastvorov. Proektirovanie ih sostavov, Infra-Ingineer, Moscow, (2015).
Google Scholar
[6]
O. L. Dvorkin, L. I. Dvorkin, Proektirovanie sostavov betona s zadannymi svoiastvami, Izdatelstvo RGTU, Rovno, (1999).
Google Scholar
[7]
T. Ochi, S. Okubo, F. Fukui, Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites. 29(2007), 448–455.
DOI: 10.1016/j.cemconcomp.2007.02.002
Google Scholar
[8]
F. N. Rabinovich, Dispersno-armirovannye betony, Stroyizdat, Moscow, (1989).
Google Scholar
[9]
Y. Wang, C.H. Wu, V. C. Li, Concrete Reinforcement with Recycled Fibers. ASCE Journal of Materials in Civil Engineering. 12 4 (2000), 314–319.
Google Scholar
[10]
Y. Lin, G. Wanping, S. Ming, H. Jun, The Experimental Study of Using Composite Polymer Fiber in Concrete. Advanced Materials Research. Current Trends in the Development of Industry. 785-786 9(2013), 257–263.
Google Scholar
[11]
Y. V. Puharenko, Principy formirovaniya struktury i prognozirovanie prochnosti fibrobetonov. Stroitelnye materialy. 10(2004), 47–50.
Google Scholar
[12]
H. Kobetičová, V. Sviatskii, K. Gerulová, I. Wachter, Y. Nikitin, L. Blinová, M. Soldán, The Use of Waste From Bauxite Ore in Sorption of 3,5-Dichlorophenol From Waste Water. Acta Montanistica Slovaca. 22 4(2017), 400–411.
Google Scholar
[13]
V. Sviatskii, A. Repko, D. Janačova, Z. Ivandič, O. Perminova, Y. Nikitin, Regeneration of a fibrous sorbent based on a centrifugal process for environmental geology of oil and groundwater degradation. Acta Montanistica Slovaca. 21 4(2016), 272–279.
Google Scholar
[14]
V. Y. Golubev, Vysokoprochnyi beton povyshennoi vyazkosti razrusheniya. Dissertation, (2009).
Google Scholar
[15]
B. Yazyev, S. Litvinov, A. Chepurnenko, A. Lapina, O. Akay, Energy Model in Calculating the Strength Characteristics of the Reinforced Concrete Components. Materials Science Forum. Materials and Technologies in Construction and Architecture. 931 9(2018), 36–41.
DOI: 10.4028/www.scientific.net/msf.931.36
Google Scholar
[16]
V.V. Babkov, Technologicheskie vozmozhnosti povysheniya udarnoi vynoslivosti cementnyh betonov. Stroitelnye materialy. 10(2003), 19–20.
Google Scholar
[17]
K. L. Domnina Issledovaniye sposobov polucheniya penobetonov neavtoklavnogotverdeniya, armirovannykh polietilentereftalatnym voloknom. Sbornik statey II mejregionalnoi naucho-practicheskoy konferencii Socialno-economicheskoe razvitie monogorodov: tradicii i innovacii. Tom 1 (2017), 102–106.
Google Scholar
[18]
B. Bako, P. Božek, Trends in Simulation and Planning of Manufacturing Companies. International conference on manufacturing engineering and materials, ICMEM, (2016).
DOI: 10.1016/j.proeng.2016.06.707
Google Scholar