[1]
X.X. Xu, J. Yang, Y.Q. Wang, Y.N. NuLi, J.L. Wang. LiNi0.5Mn1.5O3.975F0.05 as novel 5V cathode material [J]. Journal of Power Sources, 2007, (174):1113–1116.
DOI: 10.1016/j.jpowsour.2007.06.101
Google Scholar
[2]
Kisuk Kang, Ying Shirley Meng, Julien Bre´ger, Clare P. Grey, Gerbrand Ceder. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries [J]. Science, 2006, 311:977-980.
DOI: 10.1126/science.1122152
Google Scholar
[3]
G.Q. Liu, L. Wen, G.Y. Liu, Y.W. Tian. Rate capability of spinel LiCr0.1Ni0.4Mn1.5O4 [J]. Journal of Alloys and Compounds, 2010, (501): 233–235.
DOI: 10.1016/j.jallcom.2010.04.076
Google Scholar
[4]
U. Lafont, C. Locati W.J.H. Borghols, A. asinska, J. Dygas, A.V. Chadwick, E.M. Kelder. Nanosized high voltage cathode material LiMg0.05Ni0.45Mn1.5O4: structural, electrochemical and in situ investigation[J]. Journal of Power Sources, 2009, 189: 179–184.
DOI: 10.1016/j.jpowsour.2008.09.121
Google Scholar
[5]
Wook Ahn, Sung Nam Lim, Kyu-Nam Jung, Sun-Hwa Yeon, Kwang-Bum Kim, Hoon Sub Song, Kyoung-Hee Shin. Combustion-synthesized LiNi0.6Mn0.2Co0.2O2 as cathode material for lithium ion batteries [J]. Journal of Alloys and Compounds, 2014, (609): 143–149.
DOI: 10.1016/j.jallcom.2014.03.123
Google Scholar
[6]
Ming-Che Yang, Bo Xu,Ju-Hsiang Cheng, Chun-Jern Pan, Bing-Joe Hwang, and Ying S. Meng. Electronic, Structural, and Electrochemical Properties of LiNixCuyMn2–x–yO4(0 < x< 0.5, 0 < y< 0.5) High-Voltage Spinel Materials[J]. Chemistry of Materials. 2011, 23(11):2832-2841.
DOI: 10.1021/cm200042z
Google Scholar
[7]
J. Xiao, X. L. Chen, P. V. Sushko, Maria L. Sushko , Libor Kovarik , Jijun Feng , Zhiqun Deng , Jianming Zheng , Gordon L. Graff , Zimin Nie , Daiwon Choi , Jun Liu , Ji-Guang Zhang , M. Stanley Whittingham. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder[J] Adv. Mater., 2012, 24, 2109-2116.
DOI: 10.1002/adma.201104767
Google Scholar
[8]
F. Gu, S. F. Wang, M.K. Lu, Wen Guo Zou, Guang Jun Zhou, Dong Xu, Duo Yuan. Combustion synthesis and luminescence properties of Dy3+-doped MgO nanocrystals [J] J. Cryst. Growth. 2004, 260: 507-510.
DOI: 10.1016/j.jcrysgro.2003.08.044
Google Scholar
[9]
M. Kavitha, R. Subramanian, K. Somasundara Vinoth, R. Narayanan, G. Venkatesh, N. Esakkiraja. Optimization of process parameters for solution combustion synthesis of Strontium substituted Hydroxyapatite nanocrystals using Design of Experiments approach[J]. Powder Technology 271 (2015) 167-181.
DOI: 10.1016/j.powtec.2014.10.046
Google Scholar
[10]
Lianyi Shao, Jie Shu, Kaiqiang Wu, Xiaoting Lin, Peng Li, Miao Shui,Dongjie Wang, Nengbing Long,Yuanlong Ren. Low pressure preparation of spherical Si@C@CNT@C anode material for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2014, (727):8-12.
DOI: 10.1016/j.jelechem.2014.05.031
Google Scholar
[11]
J. H. Kim, S. T. Myung, and Y. K. Sun. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li ion secondary battery [J]. Electrochimica Acta, 2004, 49 (2):219–227.
DOI: 10.1016/j.electacta.2003.07.003
Google Scholar
[12]
R. Alca´ntara, M. Jaraba, P. Lavela, J.L. Tirado. Optimizing preparation conditions for 5 V electrode performance,and structural changes in Li1-xNi0.5Mn1.5O4 spinel [J]. Electrochimica Acta, 2002, 47: 1829-1835.
DOI: 10.1016/s0013-4686(02)00024-5
Google Scholar
[13]
Hyun-Wook Lee, P. Muralidharan, Claudio M. Mari, Riccardo Ruffo, Do Kyung Kim. Facile synthesis and electrochemical performance of ordered LiNi0.5Mn1.5O4 nanorods as a high power positive electrode for rechargeable Li-ion batteries[J]. Journal of Power Sources, 2011, 196: 10712-10716.
DOI: 10.1016/j.jpowsour.2011.09.002
Google Scholar
[14]
Xiaofeng Zhang, Honghe Zheng, Vincent Battaglia, Richard L. Axelbaum. Flame synthesis of 5 V spinel-LiNi0.5Mn1.5O4 cathode-materials for lithium-ion rechargeable-batteries [J]. Proceedings of the Combustion Institute, 2011, 33: 1867–1874.
DOI: 10.1016/j.proci.2010.06.084
Google Scholar
[15]
Seung-Taek Myung, Shinichi Komaba, Naoaki Kumagai, Hitoshi Yashiro, Hoon-Taek Chung, Tae-Hyung Cho. Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying Method [J]. Electrochimica Acta 2002, 47: 2543-2549.
DOI: 10.1016/s0013-4686(02)00131-7
Google Scholar
[16]
Zushan Liu, Yangmei Jiang, Xiaoyuan Zeng, Guan Xiao, Huiyu Song, Shijun Liao. Two-step oxalate approach for the preparation of high performance LiNi0.5Mn1.5O4 cathode material with high voltage [J]. Journal of Power Sources, 2014, 247: 437-443.
DOI: 10.1016/j.jpowsour.2013.09.002
Google Scholar
[17]
Gao Y, Myrtle K, Zhang MJ, M. Zhang, J. N. Reimers, J. R. Dahn. Valence band of LiNixMn2-xO4 and its effects on the voltage profiles of LiNixMn2-xO4/Li electrochemical cells [J].1996, Phys Rev B Condens Matter 54:16670–16675.
DOI: 10.1002/chin.199720010
Google Scholar
[18]
Yuan-Li Ding, Jian Xie, Gao-Shao Cao, Tie-Jun Zhu, Hong-Ming Yu, and Xin-Bing Zhao. Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries[J]. Adv. Funct. Mater. 2011, 21, 348–355.
DOI: 10.1002/adfm.201001448
Google Scholar