Extremophiles - Platform Strains for Sustainable Production of Polyhydroxyalkanoates

Article Preview

Abstract:

Polyhydroxyalkanoates (PHA) are biodegradable polyesters, which are produced by various bacteria including numerous halophiles. Employment of halophilic strain for PHA production brings numerous benefits such as robustness of the process against contamination by ubiquitous mesophiles or possibility to isolate polymer from bacterial biomass via hypotonic lysis. In this work, we screened three moderate halophiles – Halomonas halophila, Halomonas organivorans and Halomonas salina for the presence of phaC gene encoding for PHA synthase and, subsequently, we have investigated their PHA production potential on various sugars. Among tested strains, H. organivorans demonstrated the extraordinary capacity of PHA production in particular on galactose and mannose since on these saccharides PHA content in dried bacterial cells reached 83 and 90 wt. % on mannose and galactose, respectively. Therefore, H. organivoras can be considered being promising PHA producing strain in particular suitable for the valorization of lignocellulose materials rich in galactomannans such as spent coffee grounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-79

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Dumorne, D,C, Córdova, M. Astorga-Elo, P. Renganathan. Extremozymes: A Potential Source for Industrial Applications. J. Microbiol. Biotechnol. 27 (2017) 649-659.

DOI: 10.4014/jmb.1611.11006

Google Scholar

[2] A. Krüger, C. Schäfers, C. Schröder and G. Antranikian. Towards a sustainable biobased industry – Highlighting the impact of extremophiles. New Biotechnol 40 (2018) 144 – 153.

DOI: 10.1016/j.nbt.2017.05.002

Google Scholar

[3] G.-Q. Chen, Z.-R. Jiang. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 50 (2018) 94-100.

DOI: 10.1016/j.copbio.2017.11.016

Google Scholar

[4] S. Obruca, P. Sedlacek, M. Koller, D. Kucera, I. Pernicova. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 36 (2018) 856 – 870.

DOI: 10.1016/j.biotechadv.2017.12.006

Google Scholar

[5] S. Obruca, P. Sedlacek, F. Mravec, V. Krzyzanek, J. Nebesarova, O. Samek, D. Kucera, P. Benesova, K. Hrubanova, M. Milerova, I. Marova. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol. 39 (2017) 68-80.

DOI: 10.1016/j.nbt.2017.07.008

Google Scholar

[6] M. Koller. Recycling of waste streams of the biotechnological poly(hydroxyalkanoate) production by Haloferax mediterranei on whey. Int. J. Polym. Sci (2015) Article ID 370164.

DOI: 10.1155/2015/370164

Google Scholar

[7] Y.-K. leong, P. L. Show, C. W. Ooi, T.C. Ling, J. C-W. Lan. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. J. Biotechnol. 180 (2014) 52 – 65.

DOI: 10.1016/j.jbiotec.2014.03.020

Google Scholar

[8] M. Koller, E. Chiellini, G. Braunegg. Study on the production and re-use of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and extracellular polysaccharide by the archaeon Haloferax mediterranei strain DSM 1411. Chem. Biochem. Eng. Q. 29 (2015) 87-98.

DOI: 10.15255/cabeq.2014.2058

Google Scholar

[9] H. Guzmán, D. Van-Thuoc, J. Martín, R. Hatti-Kaul, J. Quillaguamán. A process for the production of ectoine and poly(3-hydroxybutyrate) by Halomonas boliviensis. Appl. Microbiol. Biotechnol. 84 (2009) 1069 – 1077.

DOI: 10.1007/s00253-009-2036-2

Google Scholar

[10] S. Obruca, O. Snajdar, Z. Svoboda, I. Marova. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil World J. Microbiol. Biotechnol. 29 (2013) 2417-2428.

DOI: 10.1007/s11274-013-1410-5

Google Scholar

[11] D. Kucera, I. Pernicová, A. Kovalcik, M. Koller, L. Mullerova, P. Sedlacek, F. Mravec, J. Nebesarova, M. Kalina, I. Marova,V. Krzyzanek, S. Obruca. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour. Technol. 256 (2018) 552-556.

DOI: 10.1016/j.biortech.2018.02.062

Google Scholar

[12] M. T. García, E. Mellado, J. C. Ostos, A. Ventosa. Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int. J. Syst. Evol. Microbiol. 54 (2004) 1723-1728.

DOI: 10.1099/ijs.0.63114-0

Google Scholar

[13] A. Kovalcik, S. Obruca, I. Marova. Valorization of spent coffee grounds: A review. Food Bioprod. Process.,110 (2018) 104-119.

DOI: 10.1016/j.fbp.2018.05.002

Google Scholar

[14] A. Rodríguez-Contreras, M. Koller, G. Braunegg, M.S. Marqués-Calvo. Poly[(R)-3-hydroxybutyrate] production under different salinity conditions by a novel Bacillus megaterium strain. New Biotechnol. 33 (2016) 73-77.

DOI: 10.1016/j.nbt.2015.08.006

Google Scholar