Increase of the Elastic Modulus of Cassava Starch Films with Modified Clay through Factorial Planning

Article Preview

Abstract:

In this study, was investigated the optimization of the factors that significantly influenced the mechanical property improvement of cassava starch nanocomposites through complete factorial design 23. The factors to be analyzed were cassava starch (A), glycerol (B) and modified clay (C) contents. The clay had its surface modified by anion exchange in the presence of a quaternary ammonium salt. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch biofilm from the maximization of the elastic modulus. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyzes: Pareto graph and response surface. The response surface showed the best combination of factor configurations to achieve the best response and SEM analysis in thermoplastic cassava starch biofilms in both the best and the worst elasticity conditions was performed to visualize the standard of the structure of the biopolymeric matrix in both conditions. The sequence of the degree of statistical significance on the elastic modulus in relation to the effects investigated is therefore C> B> A> BC> AC.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] M.M. Reddy, S. Vivekanandhan, M. Misra, S.K. Bhatia, A.K. Mohanty: Progress in Polymer Science Vol. 38 (2013), p.1653.

Google Scholar

[2] F. Zhu: Carbohydrate Polymers Vol. 122 (2015), p.456.

Google Scholar

[3] C.A. Romero-Bastida, L.A. Bello-Pérez, G. Velazquez, J. Alvarez-Ramirez: Carbohydrate Polymers Vol. 127 (2015), p.195.

DOI: 10.1016/j.carbpol.2015.03.074

Google Scholar

[4] M. Kotal, A.K. Bhowmick: Progress in Polymer Science Vol. 51 (2015), p.127.

Google Scholar

[5] C.W. Chiu, T.K. Huangb, Y.C. Wangb, B.G. Alamanib, J.J. Linb: Progress in Polymer Science Vol. 39 (2014), p.443.

Google Scholar

[6] Y. Gao, Y. Dai, H. Zhang, E. Diao, H. Hou, H. Dong: Applied Clay Science Vol. 99 (2014), p.201.

Google Scholar

[7] S. Lee, M. Park, D. Kim, I.I. Kim, D. Park: Catalysis Today Vol. 232 (2014), p.127.

Google Scholar

[8] V.P. Cyras, L.B. Manfredi, T.T. Minh-Tan, A. Vazquez: Carbohydrate Polymers Vol. 73 (2008, p.55.

Google Scholar

[9] N.T. Abdel-Ghani, A.K. Hegazy, G.A. El-Chaghaby, E.C. Lima: Desalination Vol. 249 (2009), p.343.

DOI: 10.1016/j.desal.2009.02.065

Google Scholar

[10] K. Palanikumara, J.P. Davim: Journal of Materials Processing Technology Vol. 209 (2009), p.511.

Google Scholar

[11] D. Hank, Z. Azi, S.A. Hocine, O. Chaalal, A. Hellal: Journal of Industrial and Engineering Chemistry Vol. 20 (2014), p.2256.

DOI: 10.1016/j.jiec.2013.09.058

Google Scholar

[12] D. Bingol, N. Tekin, M. Alkan: Applied Clay Science Vol. 50 (2010), p.315.

Google Scholar

[13] C. Cojocaru, G. Zakrzewska-Trznadel: Journal of Membrane Science Vol. 298 (2007), p.56.

Google Scholar

[14] C.M. Jaramillo, P.G. Seligra, S. Goyanes, C. Bernal, L. Famá: Starch/Stärke vol. 67 (2015), p.780.

DOI: 10.1002/star.201500033

Google Scholar

[15] F. Chivrac, E. Pollet, P. Dole, L. Avérous: Carbohydrate Polymers Vol. 79 (2010), p.941.

DOI: 10.1016/j.carbpol.2009.10.018

Google Scholar

[16] G. Coativy, N. Gautier, B. Pontoire, A. Buléon, D. Lourdin, E. Leroy: Carbohydrate Polymers Vol. 116 (2015), p.307.

DOI: 10.1016/j.carbpol.2013.12.024

Google Scholar

[17] G. Qi, N. Li, X.S. Sun, Y.C. Shi, D. Wang: Carbohydrate Polymers Vol. 152 (2016), p.747.

Google Scholar

[18] M.K.S. Monteiro, V.R.L. Oliveira, F.K.G. Santos, R.H.L. Leite, E.M.M. Aroucha, R.R. Silva: Materials Research (2017).

DOI: 10.1590/1980-5373-mr-2016-1087

Google Scholar