Corrosion Performance of TRIP Steels under Atmospheric Environment

Article Preview

Abstract:

Atmospheric corrosion test of TRIP steels was conducted in laboratory. The surface morphologies of the specimens were analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and electro-probe microanalysis (EPMA). Corrosion performance of TRIP steels under atmospheric environment was investigated by discussing the protective mechanism. The corrosion rates of steel A are significantly greater than steel B in atmospheric environment tests. The enhancement of corrosion performance of TRIP steel is attributed to the additions of alloying elements, such as P, Cr, Cu, and Ni etc.. The alloying elements increase the compactness and densification of rust layers. Electrochemical characteristic of TRIP steel is improved by means of the enhancement of the thermodynamic stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Mohamadizadeh, A. Z. Hanzaki, S. Mehtonen, D. Porter, and M. Moallemi. Metall. Mater. Trans. A 47A (2016) 436-449.

Google Scholar

[2] T. Morteza, M. Matthias. Acta Mater. 144 (2018) 786-800.

Google Scholar

[3] L. Hyungsoo, J. M. Chul, S. S. Su, et al. Acta Mater. 147 (2018) 247-260.

Google Scholar

[4] K. I. Sugimoto, M. Kobayashi and S. I. Hashimoto. Metall. Trans, 23A(11) (1992) 3085-3091.

Google Scholar

[5] M. D. Meyer, D. Vanderschueren and B. C. D. Cooman. ISIJ Int. 39(8) (1999) 813-822.

Google Scholar

[6] Y. Sakuma,O. Matsumura,H. Takechi. Metall Trans. 22A(2) (1991) 489-498.

Google Scholar

[7] K. I. Sugimoto, M. Misu, M.Kobayashi. ISIJ Int. 33 (1993) 775-782.

Google Scholar

[8] H. Shuichi, K. Takayuki and M. Hideaki. Corros. Sci. 49 (3) (2007) 1131-1142.

Google Scholar

[9] D. An, T. A. Griffiths, P. Konijnenberg, et al. Acta Mater. 156 (2018) 297-309.

Google Scholar

[10] J. Mahieu, J. Maki and B. C. D. Cooman. Metall Trans, 33A(8) (2002) 2573-2580.

Google Scholar

[11] J. Mahieu, J. Maki, B. C. D. Cooman. Metall. Trans. A 33 (2002) 2573-2580.

Google Scholar

[12] A. U. Malik, N. A. Siddiqi and S. Ahmad. Corros. Sci. 37 (10) (1995) 1521-1535.

Google Scholar

[13] J. H. Dong, X. H. Chen, E. H. Han. The Joint Conference of HSLA Steels 2005 and ISUGS (2005) 127-131.

Google Scholar

[14] J. S. Zhang. Corros. Sci., 51 (10) (2009) 1207-1227.

Google Scholar

[15] M. Yamashita, H. Miyuki and Y. Matsuda. Corros. Sci. 36 (2) (1994) 283-299.

Google Scholar

[16] Y. Y. Chen, H. J. Tzeng and L. I. Wei. Corros. Sci. 47 (4) (2005) 1001-1021.

Google Scholar

[17] Z. F. Wang, P. H. Li, Y. Guan. Corros. Sci. 51 (5) (2009) 954-961.

Google Scholar

[18] Q. C. Zhang, F. Ma and J. S. Wu. ISIJ Int. 42 (5) (2002) 534-539.

Google Scholar

[19] M. Yamashita, H. Nagano and T. Misawa. ISIJ Int. 38 (3) (1998) 285-290.

Google Scholar