Investigation on the Performance and Durability Behavior for the Anode-Supported Solid Oxide Fuel Cell with Composite Cathodes

Article Preview

Abstract:

The anode-supported solid oxide fuel cell (SOFC) comprises of NiO-8YSZ | 8YSZ | LSM-GDC | LSCF and the performance durability is executed for over 1000 hours. It shows low degradation phenomena under constant current operation during the complete testing period. The cell performance decreases with the decreasing of the temperature, and the maximum power densities are 408, 265, and 163 mW cm-2 at 800, 750, and 700 °C, respectively. According to the EIS analysis with the equivalent circuit model of five serial components, all resistances decrease with the testing time except the non-charge transfer resistance of the cathode. However all resistances increase with the decreasing of the temperature on the contrary. The ohmic resistance of the cell (RO) dominates the cell performance under the whole durability test period as well as the operation temperature. In this study, the RO is determined by the interfacial contact resistances, which occurred between the cell and the connecting components. The LSM-GDC | LSCF interfaces formed the discontinuous gap due to the weak attachment and external loading. The result of the activation energy analysis shows that the rate-determination step of the cell is existed in the anode side between 700 and 800 °C. However, the cell performance is controlled from the domination of the RO at 800 °C shift to the joint contributions of the RO, anodic polarization (RAP), and cathodic polarization (RCP) at 700 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-111

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Yokoo, Y. Tabata, Y. Yoshida, H. Orui, K. Hayashi, Y. Nozaki, K. Nozawa, H. Arai: J. Power Sources Vol. 184 (2008), p.84.

DOI: 10.1016/j.jpowsour.2008.05.083

Google Scholar

[2] B. Rietveld: ECS Transactions Vol. 7 (2007) p.17.

Google Scholar

[3] X. Zhang, J. Li, G. Li, Z. Feng: J. Power Sources Vol. 163 (2006) p.523.

Google Scholar

[4] S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Elsevier Ltd., Oxford, 2004).

Google Scholar

[5] A. Hagen, R. Barfod, P.V. Hendriksen, Y.L. Liu, S. Ramousse: J. Electrochem. Soc. Vol. 153 (2006) P. A1165.

DOI: 10.1149/1.2193400

Google Scholar

[6] D. Simwonis, F. Tietz, D. Stöver: Solid State Ionics Vol. 132 (2000) p.241.

Google Scholar

[7] T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano: Science Vol. 325 (2009) p.852.

Google Scholar

[8] M.D. Gross, J.M. Vohs, R.J. Gorte: J. Mater. Chem. Vol. 17 (2007) p.3071.

Google Scholar

[9] Y.H. Huang, R.I. Dass, J.C. Denyszyn, J.B. Goodenough: J. Electrochem. Soc. Vol. 153 (2006) p. A1266.

Google Scholar

[10] N.M. Tikekar, T.J. Armstrong, A.V. Virkar: J. Electrochem. Soc. Vol. 153 (2006) p. A654.

Google Scholar

[11] M. Mogensen, K.V. Jensen: Solid State Ionics Vol. 150 (2002) p.123.

Google Scholar

[12] L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, M. Liu: Science Vol. 326 (2009) p.126.

Google Scholar

[13] M. Flytzani-Stephanopoulos, M. Sakbodin, Z. Wang: Science Vol. 312 (2006) p.1508.

Google Scholar

[14] Y.L. Liu, C. Jiao: Solid State Ionics Vol. 176 (2005) p.435.

Google Scholar

[15] Y. Matsuzaki, I. Yasuda: J. Electrochem. Soc. Vol. 148 (2001) p. A126.

Google Scholar

[16] A. Mai, M. Becker, W. Assenmacher, F. Tietz, D. Hathiramani, E. Ivers-Tiffée, D. Stöver, W. Mader: Solid State Ionics Vol. 177 (2006) p. (1965).

DOI: 10.1016/j.ssi.2006.06.021

Google Scholar

[17] H. Yokokawa, H. Tu, B. Iwanschitz, A. Maic: J. Power Sources Vol. 182 (2008) p.400.

Google Scholar

[18] T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, M. Mori, T. Iwata: J. Electrochem. Soc. Vol. 137 (1990) p.3042.

Google Scholar

[19] H. Uchida, M.Yoshida, M.Watanabe: J. Electrochem. Soc. Vol. 146 (1999) p.1.

Google Scholar

[20] D. Sarantaridis, A. Atkinson: Fuel Cells Vol. 7 (2007) p.246.

Google Scholar

[21] D.Waldbillig, A.Wood, D.G. Ivey: J. Power Sources Vol. 145 (2005) p.206.

Google Scholar

[22] W. Bujalski, C.M. Dikwal, K. Kendall: J. Power Sources Vol. 171 (2007) p.96.

Google Scholar

[23] W.X. Kao, M.C. Lee, Y.C. Chang, T.N. Lin, C.H. Wang, J.C. Chang: J. Power Sources Vol. 195 (2010) p.6468.

Google Scholar

[24] H.Y. Jung, S.H. Choi, H. Kim, J.W. Son, J. Kim, H.W. Lee, J.H. Kim: J. Power Sources Vol. 159 (2006) p.478.

Google Scholar

[25] T. Iwata: J. Electrochem. Soc. Vol. 153 (1996) p.1521.

Google Scholar

[26] C.H. Wang, M.C. Lee, T.J. Huang, Y.C. Chang, W.X. Kao, T.N. Lin: Electrochem. Comm. Vol. 11 (2009) p.1381.

Google Scholar

[27] Y.J. Leng, S.H. Chan, K.A. Khor, S.P. Jiang: Int. J. Hydrogen Energy Vol. 29 (2004) p.1025.

Google Scholar

[28] S. Li, Z. Lu, N. Ai, K. Chen, W. Su: J. Power Sources Vol. 165 (2007) p.97.

Google Scholar

[29] W. X. Kao, M. C. Lee, T. N. Lin, C. H. Wang, Y. C. Chang: J. Power Sources Vol. 195 (2010) p.2220.

Google Scholar

[30] R. Barfod, M. Mogensen, T. Klemensø, Anke Hagen, Y.L. Liu, P.V. Hendriksen: J. Electrochem. Soc. Vol. 154 (2007) p. B371.

Google Scholar

[31] S. Le, K. N. Sun, N. Zhang, X. Zhu, H. Sun, Y.X. Yuan, X. Zhou: J. Power Sources Vol. 195 (2010) p.2644.

Google Scholar

[32] K.A. Khor, S.H. Chan: J. Power Sources Vol. 123 (2003) p.17.

Google Scholar

[33] S.P. Jiang, J.P. Love: Solid State Ionics Vol. 138 (2001) p.183.

Google Scholar

[34] S.P. Jiang, J.G. Love, J.P. Zhang, M. Hoang, Y. Ramprakash, A.E. Hughes, S.P.S. Badwal: Solid State Ionics Vol. 121 (1999) p.1.

Google Scholar

[35] F.H. Van Heuveln, H.J.M. Bouwmeester: J. Electrochem. Soc. Vol. 144 (1997) p.134.

Google Scholar

[36] H.Y. Lee, W.S. Cho, S.M. Oh, H.D. Wiemhöfer, W. Göpel: J. Electrochem. Soc. Vol. 142 (1995) p.2659.

Google Scholar

[37] M. Suzuki, et al., In Proceedings of the 2nd IFCC (International Fuel Cell Conference), Kobe, Japan NEDO, (1966).

Google Scholar

[38] H. Uchida, M. Yoshida, M. Watanabe: J. Electrochem. Soc. Vol. 146 (1999) p.1.

Google Scholar

[39] P. Leone, M. Santarelli, P. Asinari, M. Calí, R. Borchiellini: J. Power Sources Vol. 177 (2008) p.111.

Google Scholar