Effect of Anodizing Time on Morphology and Wettability of TiO2 Nanotubes Prepared by Carbon Cathode

Article Preview

Abstract:

In this work, titanium dioxide nanotubes (TNTs) were prepared by anodization method with carbon cathode rather than the conventional platinum electrode. The composition of electrolyte and the anodizing voltage was fixed as constant for this research. Carbon plate was used as the counter electrode and the anodizing times were varied for 5 h and 10 h. After anodization, the samples were further annealed at 450 °C to crystallize the as-produced TNTs. Phase composition and morphology were identified by XRD and FESEM, respectively. Wettability of the samples were examined using a contact angle instrument. The results showed that the annealed TNTs were anatase phase with average pore diameter and tube-length of 28.7 nm and 284.6 nm for 5 h, and 30.0 nm and 376.5 nm for 10 h, respectively. The differences in pore diameter and length of the nanotube samples were due to the effect of anodizing time. Wettability of both annealed TNTs was also affected by anodizing time. The surface modifications and wettability results suggested potential applications in biomedical fields.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-150

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Zwilling, E. Darque-Ceretti, A. Boutry-Foreille, D. David, M.Y. Perrin, M. Aucouturier: Surf. Interface Anal Vol. 27 (1999), pp.629-637.

DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Google Scholar

[2] V. Zwilling, M. Aucouturier and E. Darque-Ceretti: Electrochimica Acta Vol. 45 (1999), pp.921-929.

DOI: 10.1016/s0013-4686(99)00283-2

Google Scholar

[3] K. Mukta, P. Yogita, J. Ita, C.V. Kulkarni, L. Martina and I. Aleš: Colloids and Surfaces B: Biointerfaces Vol. 129 (2015), pp.47-53.

Google Scholar

[4] M.M. Byranvand, A.N. Kharat, L. Fatholahi and Z.M. Beiranvand: JNS Vol. 3 (2013), pp.1-9.

Google Scholar

[5] O. Seon-Yeong, C. Kwon-Koo, K. Ki-Won and R. Kwang-Sun: Phys. Scr. T139 (2010), 014052.

Google Scholar

[6] V. C. Anitha, D. Menon, S.V. Nair, R. Prasanth: Electrochimica Acta Vol. 55 (2010), pp.3703-3713.

DOI: 10.1016/j.electacta.2009.12.096

Google Scholar

[7] L. Guohua, D. Kang, W. Kai: Applied Surface Science Vol. 338 (2016), pp.313-320.

Google Scholar

[8] T. Hoseinzadeh, Z. Ghorannevis, M. Ghoranneviss, A. H. Sari, and M. K. Salem: J Theor Appl Phys Vol. 11 (2017), pp.243-248.

Google Scholar

[9] X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang and K. Klabunde: Journal of Catalysis Vol. 260 (2008), pp.128-133.

Google Scholar

[10] S. K. Mohapatra, M. Misra, V. K. Mahajan and K. S. Raja: Journal of Physical Chemistry C Vol. 111 (2007), pp.8677-8685.

Google Scholar

[11] A.K. Nageh, G.A Craig: Solar Energy Materials & Solar Cells Vol. 92 (2008), pp.1468-1475.

Google Scholar

[12] P. Roy. S. Berger, P. Schmuki, Angew: Chem. Int. Ed. Engl Vol. 50 (2011), pp.2904-2939.

DOI: 10.1002/anie.201001374

Google Scholar

[13] S.H. Dong, S. Tolou, C.K. Chang, L. Seong-Hyuk and F. Craig: Nanotechnology Vol. 22 (2011), 315704.

Google Scholar

[14] W.Y. Chang, T.H, Fang, Z.W. Chiu, Y.J. Hsiao, L.W, Ji: Microporous Mesoporous Mater Vol. 145 (2011), pp.87-92.

Google Scholar

[15] E. Feschet-Chassot, V. Raspal, Y. Sibaud, O.K. Awitor, F. Bonnemoy, J.L. Bonnet, J. Bohatier: Thin Solid Films Vol. 519 (2011), pp.2564-2568.

DOI: 10.1016/j.tsf.2010.12.184

Google Scholar

[16] Y. Yang, W. Xiaohui, L. Longtu: J. Am. Ceram. Soc Vol. 91 (2008), pp.632-635.

Google Scholar

[17] D. Regonini, F. J. Clemens: Materials Letters Vol. 142 (2015), pp.97-101.

Google Scholar