Characterization of NASICON Structure Prepared with Titanium Dioxide Doping for NOx Gas Sensor Application

Article Preview

Abstract:

An alternative sensor that can be used to monitor Nitrogen Oxide (NOx) levels in the air is an electrochemical sensor type such as Sodium Super Ionic Conductor (NASICON). In this study titanium doping on zirconium was carried out to improve the electrical conductivity of NASICON. This material was synthesized using the solid state method by mixing sodium carbonate, silicon dioxide, zirconium oxide, ammonium dihydrogen phosphate, titanium dioxide and some anhydrous ethanol into the Ballmill for 12 hours, dried at 80 °C for 12 hours then calcined at 1125 °C for 12 hours with heating rate of 2 °C.min-1. Then the material was pressed at 160 MPa to produce pellets with diameter of 10 mm and the sintering process was carried out at 1175 °C for 12 hours at a speed of 1 °C.min-1. The doping of Titanium was varied from 0 to 6 mol%. The XRD characterization results indicate that the formed material phase was monoclinic phase and rhombohedral phase. The most optimal electrical conductivity of 5.897x10-5 S.cm-1 was obtained by Titanium doping of 6 mol%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-173

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Miura, M. Ono, K. Shimanoe, N. Yamazoe, A Compact Amperometric NO2 Sensor Based On Naþ Conductive Solid Electrolyte, J.Appl .Electrochem. 28 (1998) 863–865.

Google Scholar

[2] S. Zhang, B. Quan, Z. Zhao, B. Zhao,Y .He, W. Chen, Preparation And Characterization Of NASICON With Anewsol-Gelprocess, Mater. Lett. 58 (2003) 226–229.

Google Scholar

[3] T. Kida, N. Morinaga, S. Kishi, K. M. An, K. W. Sim, B. Y. Chae, J.K. Kim B.K. Ryu, Electrochemical Detection Of Volatile Organic Compounds Using A Na3Zr2Si2PO12/Bi2Cu0.1V0.9O5.35 Hetero Junction Device, Electrochim.Acta 56 (2011)7484–7490.

DOI: 10.1016/j.electacta.2011.06.108

Google Scholar

[4] Y.L. Ding, R.N. Forster J.P.K. Seville D.J. Parker, Some As Pectsof Heat Transfer In Rolling Mode Rotating Drums Operated At Low To Medium Temperatures, Powder Technol. 121 (2001) 168–181.

DOI: 10.1016/s0032-5910(01)00343-6

Google Scholar

[5] Ling Wang, Huizhu Zhou, KuiLiu, Yinlin Wu, Lei Dai, R.V. Kumar, A CO2 Gas Sensor Based Upon Composite Nasicon/Sr-Β-Al2O3 Bielectrolyte, Solid State Ion. 179 (2008) 1662–1665.

DOI: 10.1016/j.ssi.2008.02.045

Google Scholar

[6] P. Porkodi, V. Yegnaraman, P. Kamaraj, V. Kalyanayallj, D. Jeyakumar, Synthesis Of NASICON-Amolecular Precursor- Based Approach, Chem. Mater. 20 (2008) 6410–6419.

DOI: 10.1021/cm800208k

Google Scholar

[7] J.W. Fergus, Ion Transport in Sodium Ion Conducting Solid Electrolytes, Solid StateIon. 227(2012)102–112.

DOI: 10.1016/j.ssi.2012.09.019

Google Scholar

[8] P. Yadav, M. C. Bhatnagar, Structurals Tudies Of NASICON Material of Different Compositions Bysol–Gel Method, Ceram. Int. 38 (2012) 1731–1735.

DOI: 10.1016/j.ceramint.2011.09.022

Google Scholar

[9] L. Wang, R.V. Kumar, A New SO2 Gas Sensor Based On An Mg2+ Conducting Solid Electrolyte, J.Electroanal. Chem. 543 (2003) 109–114.

DOI: 10.1016/s0022-0728(02)01438-9

Google Scholar

[10] A.B. Yaroslavtsev, I. A. Stenina, Complex Phosphates with The NASICON Structure (Mx A2-(PO4)3), Rus. J. Inorg.Chem.51(2006) S97–S116.

DOI: 10.1134/s0036023606130043

Google Scholar

[11] R.O. Fuentes, F.M. Figueiredo, F. M. B .M.arques, J.I. Franco, Processing And Electrical Properties Of NASICON Prepared From Yttria Doped Zirconia Precursors, J.Eur.Ceram.Soc.21(2001)737–743.

DOI: 10.1016/s0955-2219(00)00264-8

Google Scholar

[12] P. Yadav, M.C. Bhatnagar, Preparation, Structure and Conductivity of Sn Modified NASICON Material, J. Electroceram. 30 (2013) 145–151.

DOI: 10.1007/s10832-012-9776-6

Google Scholar

[13] E.M. Vogel, Na+ Ion Conductivity and Crystallographic Cell Characterization in The Hf-Nasicon System Na1+XHf2PxP3-XO12, Solid State Ion. 14 (1984) 1–6.

DOI: 10.1016/0167-2738(84)90002-x

Google Scholar

[14] W. Wang, Z. Zhang, O. U. Xiangyang, J. Zhao, Properties and Phase Relationship of The Na1+XHf2-YTiySixP3-xO12 System, Solid State Ion. 28–30 (1988) 442–445.

DOI: 10.1016/s0167-2738(88)80080-8

Google Scholar

[15] Bingxing Xie, Danyu Jiang, Jian Wu, Tao Feng, Jinfeng Xia, Hongqiang Nian, Effect Of Substituting Ce For Zr On The Electrical Properties Of Nasicon Materials, Journal of Physics and Chemistry of Solids 88 (2016) 104-108.

DOI: 10.1016/j.jpcs.2015.10.003

Google Scholar

[16] Eric D. Wachsman, Palitha Jayaweera, Gopala Krishnan, Angel Sanjurjo, Electrocatalytic Reduction Of NOx On La1−xAxB1−yB'yO3−δ: Evidence Of Electrically Enhanced Activity, Solid State Ionics. 136-137 (2000) 775-782.

DOI: 10.1016/s0167-2738(00)00548-8

Google Scholar

[17] H. Perthuis, Ph. Colombant, Sol–Gel Routes Leading to NASICON Ceramics, Ceram. Int. 12 (1986) 39–52.

DOI: 10.1016/s0272-8842(86)80008-6

Google Scholar

[18] V.M. Pratiwi. H. Purwaningsih, R. Fajarin, H. Setyawan, The Effects of the Addition of Silica Mol Fraction (x= 1.5; 2; 2.5) as a Solid Electrolyte on Ion Conductivity of NASICON (Na1-xZr2SixP3-xO12) Using Solid-State Method, IOP Conference Series: Materials Science and Engineering 202 (1), 012083.

DOI: 10.1088/1757-899x/202/1/012083

Google Scholar

[19] Grzegorz Paściak et. al (2014) Structure and Electrical Studies of NASICON Material for NOx Sensing. Cer. International 40 (2014) 12783-12787.

DOI: 10.1016/j.ceramint.2014.04.132

Google Scholar