[1]
Y. Hao, X. Cao, C. Ma, Z. Zhang, N. Zhao, A. Ali, T. Hou, Z. Xiang, J. Zhuang, S. Wu, B. Xing, Z. Zhang, Y. Rui, Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals, Frontiers in Plant Science. 8 (2017) 1-9.
DOI: 10.3389/fpls.2017.01332
Google Scholar
[2]
D.D. Cibim, M.T. Saito, P.A. Giovani, A.F.S. Borges, V.G.A. Pecorari, O.P. Gomes, P.N. Lisboa-Filho, F.H. Nociti-Junior, R.M. Puppin-Rontani, K.R. Kantovitz, Novel Nanotechnology of TiO2 Improves Physical-Chemical and Biological Properties of Glass Ionomer Cement, International Journal of Biomaterials. 7123919 (2017) 1-11.
DOI: 10.1155/2017/7123919
Google Scholar
[3]
A. Di Paola, M. Bellardita, L. Palmisano, Brookite, the Least Known TiO2 Photocatalyst, Catalysts. 3 (2013) 36–73.
DOI: 10.3390/catal3010036
Google Scholar
[4]
L.K. Preethi, T. Mathews, M. Nand, S.N. Jha, C.S. Gopinath, S. Dash, Band alignment and charge transfer pathway in three phase anatase-rutile-brookite TiO2 nanotubes: An efficient photocatalyst for water splitting, Applied Catalysis B: Environmental. 218 (2017) 9–19.
DOI: 10.1016/j.apcatb.2017.06.033
Google Scholar
[5]
S. El-Sherbiny, F. Morsy, M. Samir, O.A. Fouad, Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment, Applied Nanoscience. 4 (2014) 305–313.
DOI: 10.1007/s13204-013-0196-y
Google Scholar
[6]
C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, TiO2 Anatase with a Bandgap in the Visible Region, Nano Lett. 14 (2014) 6533–6538.
DOI: 10.1021/nl503131s
Google Scholar
[7]
R. Kaplan, B. Erjavec, G. Dražić, J. Grdadolnik, A. Pintar, Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants, Applied Catalysis B: Environmental. 181 (2016) 465–474.
DOI: 10.1016/j.apcatb.2015.08.027
Google Scholar
[8]
F. Haghighi, S. Roudbar Mohammadi, P. Mohammadi, S. Hosseinkhani, R. Shipour, Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms, Infection, Epidemiology and Microbiology. 1 (2013) 33–38.
Google Scholar
[9]
E. Larkin, C. Hager, J. Chandra, P.K. Mukherjee, M. Retuerto, I. Salem, L. Long, N. Isham, L. Kovanda, K. Borroto-Esoda, The emerging pathogen Candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation, Antimicrobial Agents and Chemotherapy. 61 (2017) e02396-16.
DOI: 10.1128/aac.02396-16
Google Scholar
[10]
D.-H. Lee, B. Swain, D. Shin, N.-K. Ahn, J.-R. Park, K.-S. Park, One-pot wet chemical synthesis of fluorine-containing TiO2 nanoparticles with enhanced photocatalytic activity, Materials Research Bulletin. 109 (2019) 227–232.
DOI: 10.1016/j.materresbull.2018.09.027
Google Scholar
[11]
S.G. Ullattil, P. Periyat, Microwave-power induced green synthesis of randomly oriented mesoporous anatase TiO2 nanoparticles for efficient dye sensitized solar cells, Solar Energy. 147 (2017) 99–105.
DOI: 10.1016/j.solener.2017.03.039
Google Scholar
[12]
K.D. Parikh, J.H. Joshi, M.J. Joshi, Influence of organic dopants (L-alanine and L-arginine) on structural, spectroscopic and thermal properties of ammonium dihydrogen phosphate crystal, Materials Science-Poland. 35 (2017) 632–638.
DOI: 10.1515/msp-2017-0067
Google Scholar
[13]
M. Kardanzadeh, I. Kazeminezhad, S. Mosivand, Electro-synthesis and characterization of TiO2 nanoparticles and their application in removal of congo red from water without UV radiation, Ceramics International. 44 (2018) 5652–5659.
DOI: 10.1016/j.ceramint.2017.12.214
Google Scholar
[14]
M. Ojeda, B. Chen, D.Y. Leung, J. Xuan, H. Wang, A hydrogel template synthesis of TiO2 nanoparticles for aluminium-ion batteries, Energy Procedia. 105 (2017) 3997–4002.
DOI: 10.1016/j.egypro.2017.03.836
Google Scholar
[15]
J. Jia, H. Yamamoto, T. Okajima, Y. Shigesato, On the Crystal Structural Control of Sputtered TiO2 Thin Films, Nanoscale Research Letters. 11 (2016) 324 1-9.
DOI: 10.1186/s11671-016-1531-5
Google Scholar
[16]
D. Ren, J. Li, Y. Bao, Z. Wu, S. He, A. Wang, F. Guo, Y. Chen, Low-temperature synthesis of flower-like ZnO microstructures supported on TiO2 thin films as efficient antifungal coatings for bamboo protection under dark conditions, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 555 (2018) 381–388.
DOI: 10.1016/j.colsurfa.2018.07.015
Google Scholar
[17]
S. Yu, J. Liu, Y. Zhou, R.D. Webster, X. Yan, Effect of synthesis method on the nanostructure and solar-driven photocatalytic properties of TiO2-CuS composites, ACS Sustainable Chemistry & Engineering. 5 (2017) 1347–1357.
DOI: 10.1021/acssuschemeng.6b01769
Google Scholar
[18]
K.G. Rao, C.H. Ashok, K.V. Rao, C.S. Chakra, V. Rajendar, Synthesis of TiO2 nanoparticles from orange fruit waste, Synthesis. 1 (2015) 82–90.
Google Scholar
[19]
V. Vetrivel, K. Rajendran, V. Kalaiselvi, Synthesis and characterization of pure titanium dioxide nanoparticles by sol-gel method, Int. J. ChemTech Res. 7 (2015) 1090–1097.
Google Scholar
[20]
M. Sundrarajan, K. Bama, M. Bhavani, S. Jegatheeswaran, S. Ambika, A. Sangili, P. Nithya, R. Sumathi, Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method, Journal of Photochemistry and Photobiology B: Biology. 171 (2017) 117–124.
DOI: 10.1016/j.jphotobiol.2017.05.003
Google Scholar
[21]
A. Hassani, A. Khataee, S. Karaca, C. Karaca, P. Gholami, Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite, Ultrasonics Sonochemistry. 35 (2017) 251–262.
DOI: 10.1016/j.ultsonch.2016.09.027
Google Scholar
[22]
L. Mino, A. Zecchina, G. Martra, A.M. Rossi, G. Spoto, A surface science approach to TiO2 P25 photocatalysis: An in situ FTIR study of phenol photodegradation at controlled water coverages from sub-monolayer to multilayer, Applied Catalysis B: Environmental. 196 (2016) 135–141.
DOI: 10.1016/j.apcatb.2016.05.029
Google Scholar
[23]
Y. Ide, N. Inami, H. Hattori, K. Saito, M. Sohmiya, N. Tsunoji, K. Komaguchi, T. Sano, Y. Bando, D. Golberg, Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO2 nanoparticles by hydrothermal treatment, Angewandte Chemie International Edition. 55 (2016) 3600–3605.
DOI: 10.1002/anie.201510000
Google Scholar
[24]
A. Taufiq, Sunaryono, E.G. Rachman Putra, A. Okazawa, I. Watanabe, N. Kojima, S. Pratapa, Darminto, Nanoscale Clustering and Magnetic Properties of MnxFe3-xO4 Particles Prepared from Natural Magnetite, Journal of Superconductivity and Novel Magnetism. 28 (2015) 2855–2863.
DOI: 10.1007/s10948-015-3111-9
Google Scholar
[25]
A. Taufiq, Sunaryono, N. Hidayat, A. Hidayat, E.G.R. Putra, A. Okazawa, I. Watanabe, N. Kojima, S. Pratapa, Darminto, Studies on Nanostructure and Magnetic Behaviors of Mn-Doped Black Iron Oxide Magnetic Fluids Synthesized from Iron Sand, NANO. 12 (2017) 1750110.
DOI: 10.1142/s1793292017501107
Google Scholar
[26]
A. Sotto, A. Boromand, R. Zhang, P. Luis, J.M. Arsuaga, J. Kim, B. Van der Bruggen, Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES–TiO2 membranes, Journal of Colloid and Interface Science. 363 (2011) 540–550.
DOI: 10.1016/j.jcis.2011.07.089
Google Scholar
[27]
P. Apopei, C. Catrinescu, C. Teodosiu, A. Ungureanu, S. Royer, Selective dissolution of TiO2 crystalline phases: Physicochemical characterization and photocatalytic activity, Comptes Rendus Chimie. 21 (2018) 382–390.
DOI: 10.1016/j.crci.2017.02.006
Google Scholar
[28]
X. Hu, Y. Li, J. Tian, H. Yang, H. Cui, Highly efficient full solar spectrum (UV-vis-NIR) photocatalytic performance of Ag2S quantum dot/TiO2 nanobelt heterostructures, Journal of Industrial and Engineering Chemistry. 45 (2017) 189–196.
DOI: 10.1016/j.jiec.2016.09.022
Google Scholar
[29]
H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity, Appl. Microbiol. Biotechnol. 90 (2011) 1847–1868.
DOI: 10.1007/s00253-011-3213-7
Google Scholar
[30]
T.J. Battin, F. v.d. Kammer, A. Weilhartner, S. Ottofuelling, T. Hofmann, Nanostructured TiO2: Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions, Environ. Sci. Technol. 43 (2009) 8098–8104.
DOI: 10.1021/es9017046
Google Scholar
[31]
K. Gopinath, S. Kumaraguru, K. Bhakyaraj, S. Thirumal, A. Arumugam, Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity, Superlattices and Microstructures. 92 (2016) 100–110.
DOI: 10.1016/j.spmi.2016.02.012
Google Scholar
[32]
C. Fonseca, A. Ochoa, M.T. Ulloa, E. Alvarez, D. Canales, P.A. Zapata, Poly (lactic acid)/TiO2 nanocomposites as alternative biocidal and antifungal materials, Materials Science and Engineering: C. 57 (2015) 314–320.
DOI: 10.1016/j.msec.2015.07.069
Google Scholar