[1]
A. F. Burke, Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles,, Proc. IEEE 95 (2007) 806–820.
DOI: 10.1109/jproc.2007.892490
Google Scholar
[2]
C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, Graphene-Based Supercapacitor with an Ultrahigh Energy Density,, Nano Lett. 10 (2010) 4863–4868.
DOI: 10.1021/nl102661q
Google Scholar
[3]
H. R. Naderi, P. Norouzi, and M. R. Ganjali, Electrochemical study of a novel high performance supercapacitor based on MnO2 /nitrogen-doped graphene nanocomposite,, Appl. Surf. Sci. 366 (2016) 552–560.
DOI: 10.1016/j.apsusc.2016.01.058
Google Scholar
[4]
Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, and S. Dai, Carbon materials for chemical capacitive energy storage,, Adv. Mater. Deerfield Beach Fla 23 (2011) 4828–4850.
DOI: 10.1002/adma.201100984
Google Scholar
[5]
E. Frackowiak, Carbon materials for supercapacitor application,, Phys. Chem. Chem. Phys. 9 (2007) 1774–1785.
Google Scholar
[6]
G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors,, Chem Soc Rev 41 (2012) 797–828.
DOI: 10.1039/c1cs15060j
Google Scholar
[7]
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H.-M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,, Nat. Mater.10 (2011) 424–428.
DOI: 10.1038/nmat3001
Google Scholar
[8]
X. Huang, Z. Zeng, Z. Fan, J. Liu, and H. Zhang, Graphene-Based Electrodes,, Adv. Mater. 24 (2012) 5979–6004.
Google Scholar
[9]
M. Pumera, Graphene-based nanomaterials for energy storage,, Energy Env. Sci 4 (2011) 668–674.
DOI: 10.1039/c0ee00295j
Google Scholar
[10]
A. Y. Nugraheni, D. N. Jayanti, Kurniasari, S. Soontaranon, E. G. R. Putra, and Darminto, Structural Analysis on Reduced Graphene Oxide Prepared from Old Coconut Shell by Synchrotron X-Ray Scattering,, IOP Conf. Ser. Mater. Sci. Eng. 196 (2017) 012007.
DOI: 10.1088/1757-899x/196/1/012007
Google Scholar
[11]
F. M. Wachid, A. Y. Perkasa, F. A. Prasetya, N. Rosyidah, and Darminto, Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process,, presented at the 5th Nanoscience and Nanotechnology Symposium (NNS2013), Surabaya, Indonesia, (2014) 202–206.
DOI: 10.1063/1.4866759
Google Scholar
[12]
D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T. Sham, X. Sun, S. Ye, and S. Knights, Nitrogen doping effects on the structure of graphene,, Appl. Surf. Sci. 257 (2011) 9193–9198.
DOI: 10.1016/j.apsusc.2011.05.131
Google Scholar
[13]
J. Ma, T. Xue, and X. Qin, Sugar-derived carbon/graphene composite materials as electrodes for supercapacitors,, Electrochimica Acta 115 (2014) 566–572.
DOI: 10.1016/j.electacta.2013.11.028
Google Scholar
[14]
C. Zhu, S. Guo, Y. Fang, and S. Dong, Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets,, ACS Nano 4 (2010) 2429–2437.
DOI: 10.1021/nn1002387
Google Scholar
[15]
Q. Ke, C. Tang, Y. Liu, H. Liu, and J. Wang, Intercalating graphene with clusters of Fe3O4 nanocrystals for electrochemical supercapacitors,, Mater. Res. Express 1 (2014) 025015.
DOI: 10.1088/2053-1591/1/2/025015
Google Scholar
[16]
G. B. A. Putra, H. Y. Pradana, D. E. T. Soenaryo, M. A. Baqiya, and Darminto, Synthesis of green Fe3+/glucose/rGO electrode for supercapacitor application assisted by chemical exfoliation process from burning coconut shell,, presented at the Proceedings of the 3rd International Conference on Materials and Metallurgical Engineering and Technology (ICOMMET 2017) : Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future, Surabaya, Indonesia, 2018, p.020040.
DOI: 10.1063/1.5030262
Google Scholar
[17]
A. Y. Nugraheni, M. Nasrullah, F. A. Prasetya, F. Astuti, and Darminto, Study on Phase, Molecular Bonding, and Bandgap of Reduced Graphene Oxide Prepared by Heating Coconut Shell,, Materials Science Forum 827 (2015) 285.
DOI: 10.4028/www.scientific.net/msf.827.285
Google Scholar
[18]
S. K. Sarkar, K. K. Raul, S. S. Pradhan, S. Basu, and A. Nayak, Magnetic properties of graphite oxide and reduced graphene oxide,, Phys. E Low-Dimens. Syst. Nanostructures 64 (2014) 78–82.
DOI: 10.1016/j.physe.2014.07.014
Google Scholar
[19]
S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide,, Carbon 49 (2011) 3019–3023.
DOI: 10.1016/j.carbon.2011.02.071
Google Scholar
[20]
B. Rani, V. K. Jindal, and K. Dharamvir, Interaction of nitrogen molecule with graphene,, presented at the Solid State Physics: Proceedings of the 57th DAE Solid State Physics Symposium 2012, Indian Institute of Technology, Bombay, Mumbai, India (2013) 300–301.
Google Scholar