An Approach to the Intermediate State of the Distributed Internal Fields on Muon Site

Article Preview

Abstract:

We show a new approach to provide anaysis functions of the muon-spin depolarization in order to describe the intermediate state between Gaussian and Lorentzian behavior. The Kubo Golden Rule (KGR) formula was used to mix the Gaussian and Lorentzian probability density functions. The result confirmed that the KGR formula can analytically explain the intermediate states. The current study suggests a new approach to investigate the so-called pseudogap state of high-Tc superconducting oxides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

476-482

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Tietze, P. Audehm, Y-C. Chen, G. Schütz, B.B. Straumal, S.G. Protasova, A. Mazilkin, P.B. Straumal, T. Prokscha, H. Kuetkens, Z. Salman, A. Suter, B. Baretzky, K. Fink, W. Wenzel, D. Danilov, E. Goering, Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study, Sci. Rep. 5: 8871 (2015) 1-6.

DOI: 10.1038/srep08871

Google Scholar

[2] A. Zorko, P. Jegličnik, D. Arčon, A. Balčytis, Z. Jagličić, X. Liu, A.L. Tchougréeff, R. Dronskowski, Unconventional magnetism in a nitrogen-containing analog of cupric oxide, Phys. Rev. Lett. 107 (2011) 047208 1-4.

DOI: 10.1103/physrevlett.107.047208

Google Scholar

[3] A. Zorko, F. Bert, P. Mendels, K. Marty, P. Bordet, Ground state of the easy-axis rare-earth Kagome langasite Pr3Ga5SiO14, Phys. Rev. Lett. 104 (2010) 057202 1-4.

DOI: 10.1103/physrevlett.104.057202

Google Scholar

[4] I. Watanabe, T. Adachi, S. Yairi, Y. Koike, K. Nagamine, Change of the dynamics of internal fields in the normal state of La2-xSrxCuO4, J. Phys. Soc. Jpn. 77 (2008) 124716 1-6.

DOI: 10.1143/jpsj.77.124716

Google Scholar

[5] K.M. Kojima, Spin gap systems: what can be measured by muon spin relaxation? Appl. Magn. Reson. 13 (1997) 111-122.

DOI: 10.1007/bf03161974

Google Scholar

[6] D.H. Ryan, J. van Lierop, J.M. Cadogan, Zero-field muon spin relaxation studies of frustrated magnets: physics and analysis issues, J. Phys.: Condens. Matter 16 (2004) S4619-S4638.

DOI: 10.1088/0953-8984/16/40/012

Google Scholar

[7] M.R. Crook, R. Cywinski, Voigtian Kubo-Toyabe muon spin relaxation, J. Phys: Condens. Matter 9 (1997) 1149-1158.

DOI: 10.1088/0953-8984/9/5/018

Google Scholar

[8] M.I. Larkin, Y. Fudamoto, I.M. Gat, A. Kinkhabwala, K.M. Kojima, G.M. Luke, J. Merrin, B. Nachumi, Y.J. Uemura, M. Azuma, T. Saito, M. Takano, Phys. Rev. Lett. 85 (2000) 1982-1985.

DOI: 10.1016/s0921-4526(00)00337-9

Google Scholar

[9] T. Yamazaki, Ryogo Kubo and μSR , Hyperfine Interaction 104 (1997) 3-13.

Google Scholar

[10] R. Kubo, A stochastic theory of spin relaxation, Hyperfine Interaction 8 (1981) 731-738.

Google Scholar

[11] M.I. Larkin, Y. Fudamoto, I.M. Gat, A. Kinkhabwala, K.M. Kojima, G.M. Luke, J. Merrin, B. Nachumi, Y.J. Uemura, M. Azuma, T. Saito and M. Takano, Physica B, 289-290 (2000) 153-156.

DOI: 10.1016/s0921-4526(00)00337-9

Google Scholar