Calculation Models of the Bearing Capacity of Span Reinforced Concrete Structure Support Zones

Article Preview

Abstract:

Experience gained in design, erection and operation of span reinforced concrete structures has proved that practically all of them are subject to complex stress-strain state. At that, the researchers pay considerable greater attention to calculation of strength, deformation analysis and determination of crack resistance in normal cross-sections than to calculation of their support zones, including oblique sections, which results are generally taken into account for determining the section dimensions and the quantity of the cross reinforcement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-226

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.B. Golishev, Kurs lektsIy z osnov rozrahunku budIvelnih konstruktsIy I z oporu zalIzobetonu, Logos, Kiyiv, (2004).

Google Scholar

[2] A.I. Davidenko, A.N. Bambura, S.Yu. Belyaeva, N.V. Prisyazhnyuk, K raschetu prochnosti secheniy, naklonnyih k prodolnoy osi elementa, s ispolzovaniem polnoy diagrammyi deformirovaniya betona, MehanIka I fizika ruynuvannya budIvelnih materIalIv ta konstruktsIy. 7 (2007). P. 209–216.

Google Scholar

[3] EN 1992 – 1: 2001 (Final Draft, April, 2002) Eurocode 2: Design of Concrete Structures. Part 1 General Rules and Rules for Buildings. (2004).

Google Scholar

[4] A.M. Bambura , EksperimentalnI osnovi prikladnoYi deformatsIynoYi teorIYi zalIzobetonu. Avtoreferat disertatsIYi na zdobuttya naukovogo stupenya doktora tehnIchnih nauk: spets. 05.23.01 «BudIvelnI konstruktsIYi, budIvlI ta sporudi, HarkIv, (2006).

Google Scholar

[5] V.P. Mitrofanov, V.A. Kotlyarov, Obschaya teoriya rascheta prochnosti zhelezobetonnyih elementov po naklonnyim i normalnyim treschinam, Stroitelstvo i arhitektura. 9 (1990). P.3–9.

Google Scholar

[6] H.R. Hadzhi, Nesuschaya sposobnost i raschet po naklonnyim secheniyam zhelezobetonnyih balok, vyipolnennyih s primeneniem betona na poristyih zapolnitelyah. Avtoreferat dissertatsii na soiskanie nauchnoy stepeni kandidata tehnicheskih nauk: spets. 05.23.01 Stroitelnyie konstruktsii, zdaniya i sooruzheniya,, Odessa, (1985).

Google Scholar

[7] V.M. Karpyuk, Napryazhenno–deformirovannoe sostoyanie izgibaemyih trehsloynyih zhelezobetonnyih elementov. Avtoreferat dissertatsii na zdobuttya na soiskanie nauchnoy stepeni kandidata tehnicheskih nauk: spets. 05.23.01 Stroitelnyie konstruktsii, zdaniya i sooruzheniya,, Odessa, (1989).

Google Scholar

[8] V.S. Dorofeev, V.M. Karpyuk, K.I. Artyushkina i dr., Modelirovanie napryazhenno–deformirovannogo sostoyaniya zhelezobetonnyih elementov pri prodolno–poperechnom izgibe, VIsnik OdeskoYi derzhavnoYi akademIYi budIvnitstva ta arhItekturi. 28 (2008). 137–148.

Google Scholar

[9] V.S. DorofEEv, V.M. Karpyuk, K.E. Polyanska, NelInIyniy skIncheno–elementniy rozrahunok zvichaynih, nerozrIznih ta pozatsentrovo stisnutih zalIzobetonnih balok. MaterIali naukovo-tehnIchnoYi konferentsIYi «ResursozberIgayuchI tehnologIYi v proektuvannI, zemlevporyadkuvannI ta budIvnitstva». 1/2011 (66), (2011). P. 89–96.

Google Scholar

[10] V.S. DorofEEv, V.M. Karpyuk, O.M. Petrov, Nesucha zdatnIst priopornih dIlyanok zalIzobetonnih elementIv pri poperechnomu zginI zI stisnenim ta vIlnim kruchennyam. BudIvelnI konstruktsIYi. 74 (2011). P. 118–133.

Google Scholar

[11] V.S. DorofEEv, V.M. Karpyuk, F.R. Karp'yuk, O.V. Stepura, NelInIyniy rozrahunok poperedno napruzhenih tavrovih zalIzobetonnih elementIv z vikoristannyam PK Lira 9.6,. BudIvelnI konstruktsIYi. 74 (2011). P. 134–144.

Google Scholar

[12] DBN V.2.6-98: 2009. KonstruktsIya budinkIv I sporud. BetonnI ta zalIzobetonnI konstruktsIYi. OsnovnI polozhennya proektuvannya, MInregIonbud UkraYini, KiYiv, (2009).

Google Scholar

[13] DSTU B V.2.6-156: 2010. KonstruktsIYi budinkIv I sporud. BetonnI ta zalIzobetonI konstruktsIYi z vazhkogo betonu. Pravila proektuvannya, MInregIonbud UkraYini, KiYiv, (2011).

Google Scholar

[14] A.S. Zalesov, Yu.A. Klimov, Prochnost zhelezobetonnyih konstruktsiy pri deystvii poperechnyih sil, BudIvelnik, KiYiv, (1989).

Google Scholar

[15] A.A. Gvozdev, Novoe v proektirovanii betonnyih i zhelezobetonnyih konstruktsiy, Stroyizdat, Moskva, (1978).

Google Scholar

[16] V.V. Novak, F.V. Vinokur, Yu.V. Novak, Sovershenstvovanie metoda rascheta prochnosti konstruktsiy po naklonnyim secheniyam. Beton i zhelezobeton. 12 (1984). P. 40 – 42.

Google Scholar

[17] S.P. Timoshenko, Teoriya uprugosti, Nauka, Moskva, (1975).

Google Scholar

[18] K.V. Mihaylov, Novoe o prochnosti zhelezobetona, Stroyizdat, Moskva, (1977).

Google Scholar

[19] G.A. Geniev, V.N. Kissyuk, G.A. Tyupin, Teoriya plastichnosti betona i zhelezobetona, Stroyizdat, Moskva, (1974).

Google Scholar

[20] V.M. Kruglov, Nelineynyie sootnosheniya i kriteriy prochnosti betona v trehosnom napryazhennom sostoyanii. Stroitelnaya mehanika i raschet sooruzheniy. 1 (1987) 40–44.

Google Scholar

[21] N.I. Karpenko, Obschie modeli mehaniki zhelezobetona, Stroyizdat, Moskva, (1996).

Google Scholar

[22] G.N. Stavrov, L.L. Kuksha, K opredeleniyu usiliya v prodolnoy armature v naklonnyih secheniya. Beton i zhelezobeton. 12 (1978). P. 25–26.

Google Scholar

[23] V.S. Dorofeev, V.M. Karpyuk, F.R. Karpyuk, Prochnost, treschinostoykost i deformativnost predvaritelno napryazhennyih tavrovyih zhelezobetonnyih elementov, Even, Odessa, (2010).

Google Scholar

[24] V.M. Karpyuk, A.I. Kostyuk, Yu.A. Semina, General Case of Nonlinear Deformation-Strength Model of Reinforced Concrete Structures, Strength of Materials. 50(3) (2018) 453–464.

DOI: 10.1007/s11223-018-9990-9

Google Scholar

[25] SP 52.101.2003. Betonnyie i zhelezobetonnyie konstruktsii bez predvaritelnogo napryazheniya armaturyi, Moskva, (2004).

Google Scholar

[26] V. Karpiuk, A. Kostiuk, O. Maistrenko, Yu. Somina, Influence of intermittent cyclic loading on reinforced concrete resistance model, Electronic journal of the faculty of civil engineering of Osijek, Croatia. 15 (2017). P. 59-74.

DOI: 10.13167/2017.15.6

Google Scholar