Efficiency of the Alkali-Activated Cement Concretes for Sea Construction

Article Preview

Abstract:

There are shown studies on development of the alkali-activated slag cements and concretes using Chinese raw materials. Such cements and concretes are able to provide high performance characteristics of materials and constructions under exposure of sea climate. The tests had been done for compliance with the requirements set in the national standards of P.R.China and were determined characteristics of strength, wet conditions shrinkage, freeze-thaw resistance, corrosion and weather resistance, biodegradability, water permeability, bond strength between concrete and reinforcement. The obtained positive results of tests allowed to recommend them for a pilot-scale production of the developed materials in sea construction for protection of the sea coastal line in the P.R.China.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Krivenko, Oleg, P., H. Vozniuk, S Lakusta, The development of alkali-activated cement mixtures for fast rehabilitation and strengthening of concrete structures. Procedia engineering, 195 (2017) 142-146.

DOI: 10.1016/j.proeng.2017.04.536

Google Scholar

[2] P. Krivenko, Why alkaline activation–60 years of the theory and practice of alkali-activated materials. J. Ceram. Sci. Technol 8.3 (2017): 323-334.

Google Scholar

[3] Caijun Shi, Della Roy, P. Krivenko. Alkali-activated cements and concretes. CRC press, 2003. https://www.taylorfrancis.com/books/9781482266900.

DOI: 10.1201/9781482266900

Google Scholar

[4] A. Susan, and J. Provis, Durability of alkali activated materials: progress and perspectives. Journal of the American Ceramic Society 97.4 (2014): 997-1008.

DOI: 10.1111/jace.12831

Google Scholar

[5] John L. Provis, Jannie S.J., van Deventer, P.V. Krivenko, E.S. Kavalerova and other. Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Vol. 13. Springer Science & Business Media, (2013).

DOI: 10.1007/978-94-007-7672-2_2

Google Scholar

[6] T. Kropyvnytska, R. Semeniv, H. Ivashchyshyn, (2017). Increase of brick masonry durability for external walls of buildings and structures. MATEC Web of Conferences. Vol. 116. EDP Sciences, (2017).

DOI: 10.1051/matecconf/201711601007

Google Scholar

[7] P. Krivenko, Hailin Cao, O. Petropavlovsky, Luqian Weng, V. Pushkar, Effect of technology of manufacturing the alkali activated cement concretes: porous structure and frost résistance. proc. Of the International Conference Non-traditional cement & Concrete V,. Brno University of Technology, 2014, pp.119-122.

DOI: 10.4028/www.scientific.net/amm.525.556

Google Scholar

[8] P. Krivenko, O. Petropavlovsky, O. Kovalchuk, A. Pasko, S. Lapovska, Design of the composition of alkali activated Portland cement using mineral additives of technogenic origin. J. Eastern-European Journal of Enterprise Technologies, 4/6 (94) (2018) 6-15.

DOI: 10.15587/1729-4061.2018.140324

Google Scholar

[9] J. Labrincha, at all. From NORM by-products to building materials. Naturally Occurring Radioactive Materials in Construction: Integrating Radiation Protection in Reuse (COST Action Tu1301 NORM4BUILDING), 2017, 183-252.

DOI: 10.1016/B978-0-08-102009-8.00007-4

Google Scholar

[10] O. Kovalchuk, V. Grabovchak, Y. Govdun, Alkali-activated cements mix design for concretes application in high corrosive conditions. MATEC Web of Conferences. Vol. 230. EDP Sciences, 2018.

DOI: 10.1051/matecconf/201823003007

Google Scholar

[11] V. Omelchuk, G. Ye, R. Runova, I. Rudenko, Shrinkage behavior of alkali-activated slag cement pastes. J. Key Engineering Materials,761 (2018) 45-48.

DOI: 10.4028/www.scientific.net/KEM.761.45

Google Scholar

[12] I.I. Rudenko, at all., Efficiency of redispersible polymer powders in mortars for anchoring application based on alkali activated Portland cements. J. Key Engineering Materials, 761 (2018) 27-30.

DOI: 10.4028/www.scientific.net/KEM.761.27

Google Scholar

[13] R. Runova, V. Gots, I. Rudenko, O. Konstantynovskyi, O. Lastivka, The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences. Vol. 230. EDP Sciences, 2018.

DOI: 10.1051/matecconf/201823003016

Google Scholar

[14] P.Kryvenko, H. Cao, O. Petropavlovskyi, L. Weng, O. Kovalchuk,. Applicability of alkali activated cement for immobilization of lowlevel radioactive waste in ion-exchange resins. J. Eastern-European Journal of Enterprise Technologies, 1/6(79) (2016) 40-45. DOI: http://dx.doi.org/10.15587/1729-4061.2016.59489.

DOI: 10.15587/1729-4061.2016.59489

Google Scholar

[15] P.Krivenko, O. Petropavlovsky, O. Kovalchuk, A Comparative study on the influence of metakaolin and kaolin additives on properties and ctructure of of alkali-activated slag cement and concrete. J. Eastern European Journal of Enterprise Technologies. 1/6 (91) (2018) 33-39.

DOI: 10.15587/1729-4061.2018.119624

Google Scholar

[16] P. Kryvenko, at all. Analysis of plasticizer effectiveness during alkaline cement structure formation. J. Eastern-European Journal of Enterprise Technologies, 4/6 (88) (2017) 35-41.

DOI: 10.15587/1729-4061.2017.106803

Google Scholar

[17] I.I. Rudenko, at all. Efficiency of redispersible polymer powders in mortars for anchoring application based on alkali activated Portland cements. J. Key Engineering Materials, 761 (2018) 27-30.

DOI: 10.4028/www.scientific.net/KEM.761.27

Google Scholar

[18] R.F. Runova, M.O. Kochevyh, I.I. Rudenko, On the slump loss problem of superplasticized concrete mixes. In. Proceedings of the International Conference on Admixtures - Enhancing Concrete Performance, 2005 pp.149-156.

Google Scholar

[19] P. Krivenko, O.g Petropavlovskii, H. Vozniuk, S. Lakusta, The development of alkali-activated cement mixtures for fast rehabilitation and strengthening of concrete structures. J. Procedia Engineering 195 (2017) 142-146.

DOI: 10.1016/j.proeng.2017.04.536

Google Scholar

[20] M. Sanytsky, T. Kropyvnytska, T. Kruts, O. Horpynko, I. Geviuk, Design of rapid hardening quaternary zeolite-containing Portland-composite cements. J. Key Engineering Materials, 761 (2018) 193-196.

DOI: 10.4028/www.scientific.net/KEM.761.193

Google Scholar

[21] G. Kochetov, T. Prihna, O. Kovalchuk, D. Samchenko, Research of the treatment of depleted nickel-plating electrolytes by the ferritization method. J. Eastern-European Journal of Enterprise Technologies, 3/6 (93) (2018) 52-60.

DOI: 10.15587/1729-4061.2018.133797

Google Scholar

[22] A. Fernández-Jiménez, I. Garcia-Lodeiro, O. Maltseva, A. Palomo, Hydration mechanisms of hybrid cements as a function of the way of addition of chemicals. J. Journal of the American Ceramic Society, 102(1) (2019) 427-436. URL:.

DOI: 10.1111/jace.15939

Google Scholar

[23] O. Pluhin, A. Plugin, D. Plugin, O. Borziak, O. Dudin, The effect of structural characteristics on electrical and physical properties of electrically conductive compositions based on mineral binders. J. Matec Web of Conference, 116 (2017) 01013.

DOI: 10.1051/matecconf/201711601013

Google Scholar

[24] I. Garcia-Lodeiro, V.C. Taboada, A. Fernández-Jiménez, A. Palomo, Recycling Industrial By-Products in Hybrid Cements: Mechanical and Microstructure Characterization. J. Waste and Biomass Valorization, 8(5) (2017) 1433-1440. URL:.

DOI: 10.1007/s12649-016-9679-x

Google Scholar

[25] P. Krivenko, O. Petropavlovskii, H. Vozniuk, Alkaline aluminosilicate-based adhesives for concrete and ceramic tiles. J. Revista Romana de Materiale/ Romanian Journal of Materials, 46(4) (2016) 419-423.

Google Scholar

[26] M. Alonso, A. Pasko, C. Gascó, O. Kovalchuk, J.A. Suarez, P. Krivenko, F. Puertas, Radioactivity and leachability in SCM-bearing alkali-activated matrices. J. Construction and Building Materials (Virtual special issue), 159 (2018) 745-754. https://doi.org/10.1016/j.conbuildmat.2017.11.119.

DOI: 10.1016/j.conbuildmat.2017.11.119

Google Scholar

[27] P. Krivenko, O. Kovalchuk, A. Pasko, Utilization of industrial waste water treatment residues in alkali activated cement and concretes. J. Key Engineering materials, 761 (2018) 35-38.

DOI: 10.4028/www.scientific.net/KEM.761.35

Google Scholar

[28] D.F. Velandia, C.J. Lynsdale, J.L. Provis, F. Ramirez, Effect of mix design inputs, curing and compressive strength on the durability of Na2SO4 -activated high volume fly ash concretes. J. Cement and Concrete Composites, 91 (2018) 11-20. URL:.

DOI: 10.1016/j.cemconcomp.2018.03.028

Google Scholar

[29] X. Ke, M. Criado, J.L. Provis, S.A. Bernal, Slag-Based Cements That Resist Damage Induced by Carbon Dioxide. J. ACS Sustainable Chemistry and Engineering, 6(4) (2018) 5067-5075. URL:.

DOI: 10.1021/acssuschemeng.7b04730

Google Scholar