Microstructure Characterization of Superalloy 718 during Dissimilar Rotary Friction Welding

Article Preview

Abstract:

In the present study, dissimilar friction welding between super alloy 718 and carbon steel friction welded to evaluate the formation of microstructure in the weld interface and in superalloy 718. The temperature during friction welding at weld interface was recorded to determine the temperature effect on the microstructural changes on alloy 718 side. The finite element modeling of weld interface temperature, deformation and stresses were evaluated and validated with the experimental results. The microstructural observation along with the weld interface and adjacent regions are studied. The effect of friction welding on superalloy weld interface and microstructural formation were investigated under electron backscattered diffraction analysis to evaluate the grain size measurements. The effect of thermomechanical action on the microstructure was evaluated by texture analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-217

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Kirman, D. H. Warrington, The precipitation of Ni3Nb phases in a Ni-Fe-Cr-Nb alloy, Metall. Trans. 10 (1970) 2667-2675.

DOI: 10.1007/bf03037800

Google Scholar

[2] D. Moukrane, J. Lacaze, A. Niang, B. Viguier, TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy. Adv.Mater. Sci. Eng.  (2011) (2011).

DOI: 10.1155/2011/940634

Google Scholar

[3] Murali Mohan Cheepu, Study on the Dissimilar Welding of High Temperature Materials: Microstructure, Properties and Welding Process Effects, Ph.D. thesis, Kyungsung University, 2019. http://www.riss.kr/link?id=T15074034.

Google Scholar

[4] A. Dhananjayulu, V. Devuri, M. Cheepu, D. K. Dwivedi, Tensile properties of friction stir welded joints of AA 2024-T6 alloy at different welding speeds. IOP Conf. Ser. Mater. Sci. Eng. 330 (1), (2018) 012081.

DOI: 10.1088/1757-899x/330/1/012081

Google Scholar

[5] C.H. Muralimohan, V. Muthupandi, Friction welding of type 304 stainless steel to CP titanium using nickel interlayer, Adv. Mater. Res. 794 (2013) 351-357.

DOI: 10.4028/www.scientific.net/amr.794.351

Google Scholar

[6] M. Cheepu, V. Muthupandi, W.S. Che, Improving mechanical properties of dissimilar material friction welds, Appl. Mech. Mater. 877 (2018) 157-162.

DOI: 10.4028/www.scientific.net/amm.877.157

Google Scholar

[7] D. Venkateswarulu, M. Cheepu, D. Krishnaja, S. Muthukumaran, Influence of water cooling and post-weld ageing on mechanical and microstructural properties of the friction-stir welded 6061 aluminium alloy joints. Appl. Mech. Mater. 877 (2018) 163-176.

DOI: 10.4028/www.scientific.net/amm.877.163

Google Scholar

[8] A. Shiva, M. Cheepu, V.C. Kantumuchu, K.R. Kumar, D. Venkateswarlu, B. Srinivas, S. Jerome. Microstructure characterization of Al-TiC surface composite fabricated by friction stir processing. IOP Conf. Ser. Mater. Sci. Eng. 330 (1), (2018) 012060.

DOI: 10.1088/1757-899x/330/1/012060

Google Scholar

[9] D. Venkateswarlu, M. Cheepu, M.M. Mahapatra, Analysing the friction stir welded joints of AA2219 Al-Cu alloy in different heat-treated-state. IOP Conf. Ser. Mater. Sci. Eng. 330 (1) (2018) 012074.

DOI: 10.1088/1757-899x/330/1/012074

Google Scholar

[10] K. Devireddy, V. Devuri, M. Cheepu, B.K. Kumar, Analysis of the influence of friction stir processing on gas tungsten arc welding of 2024 aluminum alloy weld zone, Int. J. Mech. Prod. Eng. Res. Dev. 8(1) (2018) 243-252.

DOI: 10.24247/ijmperdfeb201828

Google Scholar

[11] M.Cheepu, V. Muthupandi, W.S. Che (2019) Interface microstructural characterization of titanium to stainless steel dissimilar friction welds. In: The Minerals, Metals & Materials Series (eds) TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham, 259-268.

DOI: 10.1007/978-3-030-05861-6_23

Google Scholar

[12] M. Cheepu, B. Srinivas, N. Abhishek, T. Ramachandraiah, S. Karna, D. Venkateswarlu, S. Alapati, W.S. Che, Dissimilar joining of stainless steel and 5083 aluminum alloy sheets by gas tungsten arc welding-brazing process, IOP Conf. Ser. Mater. Sci. Eng. 330(1) (2018) 012048.

DOI: 10.1088/1757-899x/330/1/012048

Google Scholar

[13] C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, Properties of friction welding titanium-stainless steel joints with a nickel interlayer, Procedia. Mater. Sci. 5 (2014) 1120-1129.

DOI: 10.1016/j.mspro.2014.07.406

Google Scholar

[14] C.H. Muralimohan V. Muthupandi, K. Sivaprasad, The influence of aluminium intermediate layer in dissimilar friction welds, Inter. J. Mater. Res. 105 (2014) 350-357.

DOI: 10.3139/146.111031

Google Scholar

[15] M. Cheepu, V. Muthupandi, D. Venkateswarlu, B. Srinivas, W.S. Che, Interfacial Microstructures and Characterization of the Titanium-Stainless Steel Friction Welds Using Interlayer Technique, In: Parinov I., Chang SH., Gupta V. (eds) Advanced Materials. PHENMA 2017. Springer Proceedings in Physics, vol 207. Springer, Cham (2018).

DOI: 10.1007/978-3-319-78919-4_21

Google Scholar

[16] M.M. Cheepu, V. Muthupandi, S. Loganathan, Friction welding of titanium to 304 stainless steel with electroplated nickel interlayer, Mater. Sci. Forum. 710 (2012) 620-625.

DOI: 10.4028/www.scientific.net/msf.710.620

Google Scholar

[17] D. Krishnaja, M. Cheepu, D. Venkateswarlu, A review of research progress on dissimilar laser weld-brazing of automotive applications, IOP Conf. Ser. Mater. Sci. Eng. 330(1) (2018) 012073.

DOI: 10.1088/1757-899x/330/1/012073

Google Scholar

[18] M. Cheepu and W. S. Che, Effect of burn-off length on the properties of friction welded dissimilar steel bars, J. Weld. Join. 37(1) (2019). DOI: https://doi.org/10.5781/JWJ.2019.37.1.6.

DOI: 10.5781/jwj.2019.37.1.6

Google Scholar

[19] M. Cheepu, M. Ashfaq, V. Muthupandi, A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel, Trans. Indian. Inst. Met. 70 (2017) 2591-2600.

DOI: 10.1007/s12666-017-1114-x

Google Scholar

[20] D. Venkateswarlu, N. R. Mandal, M. M. Mahapatra, S. P. Harsha, Tool design effects for FSW of AA7039, Weld. J.92 (2013) 41-47.

Google Scholar

[21] M. Cheepu and W. S. Che, Characterization of microstructure and interface reactions in friction welded bimetallic joints of titanium to 304 stainless steel using nickel interlayer, Trans. Indian. Inst. Met. 72 (2019).

DOI: 10.1007/s12666-019-01612-4

Google Scholar

[22] M. Cheepu, W.S. Che, Friction welding of titanium to stainless steel using Al interlayer. Trans. Indian. Inst. Met. 72 (2019). https://doi.org/10.1007/s12666-019-01655-7.

DOI: 10.1007/s12666-019-01655-7

Google Scholar

[23] C.H. Muralimohan M. Ashfaq, R. Ashiri, V. Muthupandi, K. Sivaprasad, Analysis and characterization of the role of Ni interlayer in the friction welding of titanium and 304 austenitic stainless steel, Metall. Mater. Trans. A. 47 (2016) 347-359.

DOI: 10.1007/s11661-015-3210-z

Google Scholar

[24] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Evaluation of microstructures and mechanical properties of dissimilar materials by friction welding, Procedia. Mater. Sci. 5 (2014) 1107-1113.

DOI: 10.1016/j.mspro.2014.07.404

Google Scholar

[25] S. Karna, M. Cheepu, D. Venkateswarulu, V. Srikanth, Recent developments and research progress on friction stir welding of titanium alloys: an overview. IOP Conf. Ser. Mater. Sci. Eng. 330(1) (2018) 012068.

DOI: 10.1088/1757-899x/330/1/012068

Google Scholar

[26] S. Zhao, Q. Bi, Y. Wang, J. Shi, Empirical modeling for the effects of welding factors on tensile properties of bobbin tool friction-stir-welded 2219-T87 aluminum alloy. Int. J. Adv. Manuf. Technol. 90 (2017) 1105-1118.

DOI: 10.1007/s00170-016-9450-2

Google Scholar

[27] M. Cheepu, V. Muthupandi, B. Srinivas, K. Sivaprasad, Development of a friction welded bimetallic joints between titanium and 304 austenitic stainless steel, in: P.M. Pawar, B.P. Ronge, R. Balasubramaniam, S. Seshabhattar (Eds.), Techno-Societal 2016, International Conference on Advanced Technologies for Societal Applications, ICATSA 2016, Springer, Cham, 2018, 709-717.

DOI: 10.1007/978-3-319-53556-2_73

Google Scholar

[28] H. Sangathoti, M. Cheepu, L. Tammineni, N.K. Gurasala, V. Devuri, V.C. Kantumuchu, Dissimilar friction welding of AISI 304 austenitic stainless steel and AISI D3 tool steel: Mechanical properties and microstructural characterization. In Advances in Materials and Metallurgy, pp.271-281. Springer, Singapore, (2019).

DOI: 10.1007/978-981-13-1780-4_27

Google Scholar

[29] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Joining of AISI 1040 steel to 6082-T6 aluminium alloy by friction welding, J. Adv. Mech. Eng. Sci. 1(1) (2015) 57-64.

DOI: 10.18831/james.in/2015011006

Google Scholar

[30] M. Cheepu, S. Haribabu, T. Ramachandraiah, B. Srinivas, D. Venkateswarulu, S. Karna, S. Alapati, W.S. Che, Fabrication and analysis of accumulative roll bonding process between magnesium and aluminum multi-layers, Appl. Mech. Mater. 877 (2018) 183-189.

DOI: 10.4028/www.scientific.net/amm.877.183

Google Scholar

[31] M.C. Kushan, S.C. Uzgur, Y. Uzunonat, F. Diltemiz (2012). ALLVAC 718 Plus Superalloy for Aircraft Engine Applications, Recent Advances in Aircraft Technology, Dr. Ramesh Agarwal (Ed.).

DOI: 10.5772/38433

Google Scholar

[32] A. Thomas, M. El-Wahabi, J.M. Cabrera, J.M. Prado High temperature deformation of Inconel 718 J. Mater. Process. Technol, 177 (2006) 469-472.

DOI: 10.1016/j.jmatprotec.2006.04.072

Google Scholar

[33] Y. Huang, T.G. Langdon The evolution of delta-phase in a superplastic Inconel 718 alloy. J. Mater. Sci. 42(2007) 421-427.

DOI: 10.1007/s10853-006-0483-z

Google Scholar