[1]
Z. tanabe, F. Matsumoto, Actualities and problems of Al alloy for the environmental resistance, Journal of Japan Institute of Light Metals. 39(3) (2001), 125-134.
Google Scholar
[2]
S.J. kim, J.Y. ko, S.K. Jang, J.I. kim, Evaluation of mechanical and electrochemical properties of materials for Al ship in sea water environment, Proceedings of the Korean Society of Marine Environment and Safety. 161 (2005).
Google Scholar
[3]
Ministry of Maritime Affairs and Fishers, Comprehensive Program for Fisheries and the Fishing Industry. 20 (2004).
Google Scholar
[4]
S. Wernick, R. Pinner, P.G. Sheasby, The surface treatment and finishing of aluminum and its alloys., 5th ed. Finishing Publication Ltd, (1987).
Google Scholar
[5]
V.F. Henley, Anodic oxidation of aluminum and its alloys., Pergamon Press, (1982).
Google Scholar
[6]
W. Zhang, G.S. Frankel, Transitions between pitting and intergranular corrosion in AA2024, Electrochim. Acta. 48 (2003) 1193-1210.
DOI: 10.1016/s0013-4686(02)00828-9
Google Scholar
[7]
X. Shen, X. Nie, H. Hu, J. Tjon, Effects of coating thickness on thermal conductivities of alumina coatings and alumina/aluminum hybrid materials prepared using plasma electrolytic oxidation, Surf. Coat. Technol. 207 (2012) 96-101.
DOI: 10.1016/j.surfcoat.2012.06.009
Google Scholar
[8]
A. Saini, S.K. Jat, D.S. Shekhawat, A. Kumar, V. Dhayal, D.C. Agarwal, Oxime-modified aluminium(III) alkoxides: Potential precursors for alumina nano-powders and optically transparent alumina film, Mater. Res. Bull. 93 (2017) 373-380.
DOI: 10.1016/j.materresbull.2017.04.011
Google Scholar
[9]
A. Saini, V. Dhayal, and D.C. Agarwal, Evaluation of corrosion protective behavior of alumina film deposited by oxime-modified aluminium(III) alkoxide precursor, Surf. Coat. Technol. 335 (2018) 241-247.
DOI: 10.1016/j.surfcoat.2017.12.020
Google Scholar
[10]
B. Valdez, S. Kiyota, M. toytcheva, R. Zlatev, J.M. Bastidas, Cerium-based conversion coatings to improve the corrosion resistance of aluminium alloy 6061-T6, Corros. Sci. 87 (2014) 141-149.
DOI: 10.1016/j.corsci.2014.06.023
Google Scholar
[11]
V. Encinas-Sanchez, A. Macias-Garcia, M.A. Diaz-Diez, P. Brito, D. Cardoso, Influence of the quality and uniformity of ceramic coatings on corrosion resistance, Ceram. Int. 41(2015) 5138-5146.
DOI: 10.1016/j.ceramint.2014.12.087
Google Scholar
[12]
J.K. Seong, K. Jae-Yong, H. Min-Su, Evaluation of the characteristics using slow strain rate tests of 5456 Al-Mg alloy for ship construction. Korean J. Chem. Eng. 23(2006) 1028-1033.
DOI: 10.1007/s11814-006-0025-z
Google Scholar
[13]
T.P. Gabb, J. Telesman, A. Garg, P. Lin, V. Provenzano, R. Heard, H.M. Miller, Grain boundary engineering the mechanical properties of Alloy 718Plus Super alloy, Proceeding of the 7th International Symposiam on Superalloy 718 and Derivatives. (2010). 255 -270.
DOI: 10.7449/2010/superalloys_2010_255_269
Google Scholar
[14]
E. Ienei, A.C. Milea, A. Duta, Influence of spray pyrolysis deposition parameters on the optical properties of porous alumina films, Energy Procedia. 48 (2014) 97–104.
DOI: 10.1016/j.egypro.2014.02.012
Google Scholar
[15]
T. Novakovic, N. Radic, B. Grbic, V. Dondur, M. Mitric, D. Randjelovic, D. Stoychev, P. Stefanov, The thermal stability of porous alumina/stainless steel catalyst support obtained by spray pyrolysis, Appl. Surf. Sci 255 (2008) 3049–3055.
DOI: 10.1016/j.apsusc.2008.08.074
Google Scholar