[1]
R. S. Parihar, S. G. Setti, and R. K. Sahu, Recent advances in the manufacturing processes of functionally graded materials: a review,, Sci. Eng. Compos. Mater., vol. 0, no. 0, (2016).
Google Scholar
[2]
N. Moes, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing,, Int. J. Numer. Meth. Engng. 46, vol. 150, no. February, p.131–150, (1999).
DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j
Google Scholar
[3]
N. Sukumar, N. Moes, B. Moran, and T. Belytschko, Extended finite element method for three-dimensional crack modelling,, Int. J. Numer. Meth. Engng, no. November 2000, p.1549–1570, (2000).
DOI: 10.1002/1097-0207(20000820)48:11<1549::aid-nme955>3.0.co;2-a
Google Scholar
[4]
S. Bhattacharya, I. V. Singh, and B. K. Mishra, Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM,, Int. J. Fract. vol. 183: p.81–97, (2013).
DOI: 10.1007/s10704-013-9877-5
Google Scholar
[5]
S. Bhattacharya, I. V. Singh, and B. K. Mishra, Fatigue-life estimation of functionally graded materials using XFEM,, Engineering with computers,vol. 23, p.427–448, (2013).
DOI: 10.1007/s00366-012-0261-2
Google Scholar
[6]
S. Bhattacharya, I. V. Singh, and B. K. Mishra, and T. Q. Bui, Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM,, Comput. Mech., vol. 52, p.799–814, (2013).
DOI: 10.1007/s00466-013-0845-8
Google Scholar
[7]
S. Bhattacharya, I. V. Singh, and B. K. Mishra, International journal of mechanical sciences fatigue life simulation of functionally graded materials under cyclic thermal load using XFEM,, Int. J. Mech. Sci., vol. 82, p.41–59, (2014).
DOI: 10.1016/j.ijmecsci.2014.03.005
Google Scholar
[8]
S. Bhattacharya and K. Sharma, Fatigue crack growth simulations of FGM plate under cyclic thermal load by XFEM,, Procedia Eng., vol. 86, p.727–731, (2014).
DOI: 10.1016/j.proeng.2014.11.091
Google Scholar
[9]
K. Sharma, S. Bhattacharya, and V. Sonkar, XFEM simulation on mixed-mode fatigue crack growth of functionally graded materials,, J. Mech. Eng. Biomech., vol. 1, no. 1, p.46–55, (2016).
Google Scholar
[10]
S. Bhattacharya, K. Sharma, and V. Sonkar, Numerical simulation of elastic plastic fatigue crack growth in functionally graded material using XFEM,, Mech. Adv. Mater. Struct., vol. 6494, no. February 2017, p.1–14, (2016).
DOI: 10.1080/15376494.2016.1227511
Google Scholar
[11]
M. Pant, K. Sharma, and S. Bhattacharya, Application of EFGM and XFEM for fatigue crack growth analysis of functionally graded materials,, Procedia Eng., vol. 173, p.1231–1238, (2017).
DOI: 10.1016/j.proeng.2016.12.135
Google Scholar
[12]
B. N. Rao and S. Rahman, An interaction integral method for analysis of cracks in orthotropic functionally graded materials,, Comput. Mech., vol. 32, p.40–51, (2003).
DOI: 10.1007/s00466-003-0460-1
Google Scholar