Selection of High Entropy Alloy for Solid Solution Using Multi-Criteria Decision Making Tool

Article Preview

Abstract:

High entropy alloys (HEA’s) have found a very special place in aerospace industries due to their property of forming solid solution. In past literatures on high entropy alloys, it is established that parameters like atomic size difference (), topological parameter (Ω) and electro-negativity difference (∆) plays a vital role in deciding whether solid solution will be formed or not. Therefore, the present study deals with the selection of optimal high entropy composition based on the three parameters δ, Ω and with the help of TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). Ranking is done for 38 HEA different compositions such that the first rank represents the HEA which is most likely to form solid solution. The study reveals that TOPSIS method can be successfully implemented to predict the formation of solid solution in HEA’s.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

466-471

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu, Alloying behavior , microstructure and mechanical properties,, J. Mater., vol. 51, p.854–860, (2013).

DOI: 10.1016/j.matdes.2013.04.061

Google Scholar

[2] S. Ranganathan, Alloyed pleasures : Multimetallic cocktails,, vol. 85, no. 10, p.10–12, (2003).

Google Scholar

[3] S. Guo, C. Ng, J. Lu, C. T. Liu, M. Carlo, S. Guo, C. Ng, J. Lu, and C. T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys,, vol. 103505, (2011).

DOI: 10.1063/1.3587228

Google Scholar

[4] S. J. Mary, R. Nagalakshmi, and R. Epshiba, HIGH ENTROPY ALLOYS PROPERTIES AND ITS APPLICATIONS – AN OVERVIEW,, vol. 4, no. 6, p.279–284, (2015).

Google Scholar

[5] G. R. Holcomb, J. Tylczak, and C. Carney, Oxidation of CoCrFeMnNi High Entropy Alloys,, vol. 67, no. 10, p.2326–2339, (2015).

DOI: 10.1007/s11837-015-1517-2

Google Scholar

[6] V. F. Bashev and O. I. Kushnerov, Structure and Properties of High Entropy CoCrCuFeNiSn x Alloys,, vol. 115, no. 7, p.737–741, (2014).

Google Scholar

[7] X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys,, Mater. Chem. Phys., vol. 132, no. 2–3, p.233–238, (2012).

DOI: 10.1016/j.matchemphys.2011.11.021

Google Scholar

[8] Z. Wang, Y. Huang, Y. Yang, and C. T. Liu, ScienceDirect Atomic-size effect and solid solubility of multicomponent alloys,, Scr. Mater., vol. 94, p.28–31, (2015).

DOI: 10.1016/j.scriptamat.2014.09.010

Google Scholar

[9] Y. Wang, Y. Yang, H. Yang, M. Zhang, and S. Ma, Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy,, Mater. Chem. Phys., vol. 210, p.233–239, (2018).

DOI: 10.1016/j.matchemphys.2017.05.029

Google Scholar

[10] Y. Lu and T. Wang, Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys,, Intermetallics, vol. 52, no. May, p.105–109, (2014).

DOI: 10.1016/j.intermet.2014.04.001

Google Scholar

[11] A. Kumar, A. Subramaniam, and D. H, On the formation of disordered solid solutions in multi-component alloys,, J. Alloys Compd., vol. 587, p.113–119, (2014).

DOI: 10.1016/j.jallcom.2013.10.133

Google Scholar

[12] Q. Bao, D. Ruan, Y. Shen, E. Hermans, and D. Janssens, Knowledge-Based Systems Improved hierarchical fuzzy TOPSIS for road safety performance evaluation,, Knowledge-Based Syst., vol. 32, p.84–90, (2012).

DOI: 10.1016/j.knosys.2011.08.014

Google Scholar

[13] G. Torlak, M. Sevkli, M. Sanal, and S. Zaim, Expert Systems with Applications Analyzing business competition by using fuzzy TOPSIS method : An example of Turkish domestic airline industry,, Expert Syst. Appl., vol. 38, no. 4, p.3396–3406, (2011).

DOI: 10.1016/j.eswa.2010.08.125

Google Scholar

[14] C. Ni, B. C. Hsu, W. Wang, W. Tang, S. Chen, and J. Yeh, Microstructure and Mechanical Properties of New,, no. 1, p.44–49, (2010).

Google Scholar

[15] C. Y. Hsu, C. C. Juan, W. R. Wang, T. S. Sheu, J. W. Yeh, and S. K. Chen, On the superior hot hardness and softening resistance of AlCoCr xFeMo 0.5Ni high-entropy alloys,, Mater. Sci. Eng. A, vol. 528, no. 10–11, p.3581–3588, (2011).

DOI: 10.1016/j.msea.2011.01.072

Google Scholar

[16] T. Shun, L. Chang, and M. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo x alloys,, Mater. Charact., vol. 70, p.63–67, (2012).

DOI: 10.1016/j.matchar.2012.05.005

Google Scholar

[17] T. T. Shun, L. Y. Chang, and M. H. Shiu, Microstructures and mechanical properties of multiprincipal component CoCrFeNiTi x alloys,, Mater. Sci. Eng. A, vol. 556, p.170–174, (2012).

DOI: 10.1016/j.msea.2012.06.075

Google Scholar

[18] X. F. Wang, Y. Zhang, Y. Qiao, and G. L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTi x alloys,, vol. 15, (2007).

Google Scholar

[19] K. Zhang and Z. Fu, Intermetallics Effects of annealing treatment on properties of CoCrFeNiTiAl x multi-component alloys,, Intermetallics, vol. 28, p.34–39, (2012).

DOI: 10.1016/j.intermet.2012.03.059

Google Scholar

[20] Y. J. Zhou, Y. Zhang, Y. L. Wang, and G. L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties,, vol. 181904, no. 2007, (2012).

DOI: 10.1063/1.2734517

Google Scholar

[21] B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys,, Mater. Sci. Eng. A, vol. 375–377, p.213–218, (2004).

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[22] J. Yeh, S. Chen, J. Gan, S. Lin, and T. Chin, Communications: Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements,, vol. 35, no. August 2004, p.2533–2536, (2010).

DOI: 10.1007/s11661-006-0234-4

Google Scholar

[23] J. Yeh, S. Chang, Y. Hong, S. Chen, and S. Lin, Anomalous decrease in X-ray diffraction intensities of Cu – Ni – Al – Co – Cr – Fe – Si alloy systems with multi-principal elements,, vol. 103, p.41–46, (2007).

DOI: 10.1016/j.matchemphys.2007.01.003

Google Scholar

[24] H. Chou, Y. Chang, S. Chen, and J. Yeh, Microstructure , thermo physical and electrical properties in AlxCoCrFeNi ( 0 ≤ x ≤ 2 ) high-entropy alloys,, vol. 163, p.184–189, (2009).

DOI: 10.1016/j.mseb.2009.05.024

Google Scholar

[25] R. Song, F. Ye, C. Yang, and S. Wu, Effect of alloying elements on microstructure, mechanical and damping properties of Cr-Mn-Fe-V-Cu high-entropy alloys,, J. Mater. Sci. Technol., vol.34, no. 11, p.2014–2021, (2018).

DOI: 10.1016/j.jmst.2018.02.026

Google Scholar

[26] B. Ren, Z. X. Liu, D. M. Li, L. Shi, B. Cai, and M. X. Wang, Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system,, J. Alloys Compd., vol. 493, no. 1–2, p.148–153, (2010).

DOI: 10.1016/j.jallcom.2009.12.183

Google Scholar

[27] T. T. Shun, C. H. Hung, and C. F. Lee, Formation of ordered/disordered nano particles in FCC high entropy alloys,, J. Alloys Compd., vol. 493, no. 1–2, p.105–109, (2010).

DOI: 10.1016/j.jallcom.2009.12.071

Google Scholar

[28] H. W. Chang, P. K. Huang, A. Davison, J. W. Yeh, C. H. Tsau, and C. C. Yang, Nitride films deposited from an equimolar Al-Cr-Mo-Si-Ti alloy target by reactive direct current magnetron sputtering,, Thin Solid Films, vol. 516, no. 18, p.6402–6408, (2008).

DOI: 10.1016/j.tsf.2008.01.019

Google Scholar