High Entropy Based Composites - An Overview

Article Preview

Abstract:

High entropy alloy (HEA) is a new class of alloy that has a different alloy design concept over the conventional dilute alloys. In this alloy, the alloying elements have an equi-atomic ratio that helps to increase the entropy of the alloy to stabilize the simple solid solution (BCC, FCC and HCP) over the intermetallics. The stabilization of solid solution improves the paradoxial properties such as strength and toughness. High thermal stability, excellent creep and fatigue properties, outstanding corrosion resistance are the attractive features of HEA. Recently, the HEA is explored as a matrix or particle in the metal matrix composites. Research studies on HEA based composites are plenty and scattered. In this work, we attempt to collate essential information in the HEA based composites. The overview covers (1) processing techniques, (2) microstructure characterization and (3) the mechanical properties in detail. A short note on the potential applications of HEA based composites is also proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-103

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang. High-entropy alloy: challenges and prospects, Materials Today, 19 (6), (2016).

Google Scholar

[2] J.W. Yeh, Eur. J. Control 31 (6) (2006) 633.

Google Scholar

[3] Yang S, Yan X, Yang K, Fu Z, Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys, Vaccum (2016),.

DOI: 10.1016/j.vacuum.2016.05.019

Google Scholar

[4] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, Microstructures and properties of high-entropy Alloys, Prog. Mater. Sci. 61 (2014) 1–93.

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[5] G. Zhu, Y.L. Jinwen Ye, Early high-temperature oxidation behavior of Ti(C,N)- based cermets with multi-component AlCoCrFeNi high-entropy alloy binder, Int. J. Refract. Metals Hard Mater. 44 (2014) 35e41.

DOI: 10.1016/j.ijrmhm.2014.01.005

Google Scholar

[6] C.-S. Chen, C.-C. Yang, H-Yi Chai, J-Wei Yeh, J.L.H. Chau, Novel cermet material of WC/multi-element alloy, Int. J. Refract. Metals Hard Mater. 43 (2014) 200-204.

DOI: 10.1016/j.ijrmhm.2013.11.005

Google Scholar

[7] S Riva, Adam Tudball, Shahin Mehraban, Nicholas P. Lavery, Stephen G.R. Brown, Kirill V. Yusenko, A novel High-Entropy Alloy-based composite material, Journal of Alloys and Compounds (2017),.

DOI: 10.1016/j.jallcom.2017.09.274

Google Scholar

[8] G.M. Karthik, Santhanu Panikar, G.D. Janaki Ram and Ravi Sankar Kottada, Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles, Materials Science & Engineering A, http://dx.doi.org/10.1016/ j.msea. 2016. 10.038.

DOI: 10.1016/j.msea.2016.10.038

Google Scholar

[9] G. Meng, T.M. Yue, X. Lin, H. Yang, H. Xie, X. Ding, Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites, Opt. Laser Technol. 70 (2015) 119 – 127.

DOI: 10.1016/j.optlastec.2015.02.001

Google Scholar

[10] Gray JE, Luan B. Protective coatings on magnesium and its alloys – a critical review. J Alloy Compd 2002; 336: 88–113.

DOI: 10.1016/s0925-8388(01)01899-0

Google Scholar

[11] L Rogal, D Kalita, L Litynska-Dobrzynska, CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3, Intermetallics 86 (2017) 104-109.

DOI: 10.1016/j.intermet.2017.03.019

Google Scholar

[12] X Liu, L Zhang, Y Xu, Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS, Appl. Phys. A 123 (2017) 567.

DOI: 10.1007/s00339-017-1151-7

Google Scholar

[13] Z Fu, R Koc, Ultrafine TiB2-TiNiFeCrCoAl high-entropy alloy composite with enhanced mechanical properties, Materials Science & Engineering A, http://dx.doi.org/10.1016/j.msea.2017.07.008.

DOI: 10.1016/j.msea.2017.07.008

Google Scholar

[14] Fan, Q. C., B. S. Li, and Y. Zhang. The microstructure and properties of (FeCrNiCo) AlxCuy high-entropy alloys and their TiC-reinforced composites., Materials Science and Engineering: A 598 (2014): 244-250.

DOI: 10.1016/j.msea.2014.01.044

Google Scholar

[15] Mileiko, S.T., Firstov, S.A., Novokhatskaya, N.A., Gorban', V.F., Krapivka, N.P., Oxidefibre/high-entropy-alloy-matrix composites, Composites: Part A (2015) , doi: http://dx.doi.org/10.1016/j.compositesa.2015.05.023.

DOI: 10.1016/j.compositesa.2015.05.023

Google Scholar