[1]
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang. High-entropy alloy: challenges and prospects, Materials Today, 19 (6), (2016).
Google Scholar
[2]
J.W. Yeh, Eur. J. Control 31 (6) (2006) 633.
Google Scholar
[3]
Yang S, Yan X, Yang K, Fu Z, Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys, Vaccum (2016),.
DOI: 10.1016/j.vacuum.2016.05.019
Google Scholar
[4]
Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, Microstructures and properties of high-entropy Alloys, Prog. Mater. Sci. 61 (2014) 1–93.
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[5]
G. Zhu, Y.L. Jinwen Ye, Early high-temperature oxidation behavior of Ti(C,N)- based cermets with multi-component AlCoCrFeNi high-entropy alloy binder, Int. J. Refract. Metals Hard Mater. 44 (2014) 35e41.
DOI: 10.1016/j.ijrmhm.2014.01.005
Google Scholar
[6]
C.-S. Chen, C.-C. Yang, H-Yi Chai, J-Wei Yeh, J.L.H. Chau, Novel cermet material of WC/multi-element alloy, Int. J. Refract. Metals Hard Mater. 43 (2014) 200-204.
DOI: 10.1016/j.ijrmhm.2013.11.005
Google Scholar
[7]
S Riva, Adam Tudball, Shahin Mehraban, Nicholas P. Lavery, Stephen G.R. Brown, Kirill V. Yusenko, A novel High-Entropy Alloy-based composite material, Journal of Alloys and Compounds (2017),.
DOI: 10.1016/j.jallcom.2017.09.274
Google Scholar
[8]
G.M. Karthik, Santhanu Panikar, G.D. Janaki Ram and Ravi Sankar Kottada, Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles, Materials Science & Engineering A, http://dx.doi.org/10.1016/ j.msea. 2016. 10.038.
DOI: 10.1016/j.msea.2016.10.038
Google Scholar
[9]
G. Meng, T.M. Yue, X. Lin, H. Yang, H. Xie, X. Ding, Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites, Opt. Laser Technol. 70 (2015) 119 – 127.
DOI: 10.1016/j.optlastec.2015.02.001
Google Scholar
[10]
Gray JE, Luan B. Protective coatings on magnesium and its alloys – a critical review. J Alloy Compd 2002; 336: 88–113.
DOI: 10.1016/s0925-8388(01)01899-0
Google Scholar
[11]
L Rogal, D Kalita, L Litynska-Dobrzynska, CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3, Intermetallics 86 (2017) 104-109.
DOI: 10.1016/j.intermet.2017.03.019
Google Scholar
[12]
X Liu, L Zhang, Y Xu, Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS, Appl. Phys. A 123 (2017) 567.
DOI: 10.1007/s00339-017-1151-7
Google Scholar
[13]
Z Fu, R Koc, Ultrafine TiB2-TiNiFeCrCoAl high-entropy alloy composite with enhanced mechanical properties, Materials Science & Engineering A, http://dx.doi.org/10.1016/j.msea.2017.07.008.
DOI: 10.1016/j.msea.2017.07.008
Google Scholar
[14]
Fan, Q. C., B. S. Li, and Y. Zhang. The microstructure and properties of (FeCrNiCo) AlxCuy high-entropy alloys and their TiC-reinforced composites., Materials Science and Engineering: A 598 (2014): 244-250.
DOI: 10.1016/j.msea.2014.01.044
Google Scholar
[15]
Mileiko, S.T., Firstov, S.A., Novokhatskaya, N.A., Gorban', V.F., Krapivka, N.P., Oxidefibre/high-entropy-alloy-matrix composites, Composites: Part A (2015) , doi: http://dx.doi.org/10.1016/j.compositesa.2015.05.023.
DOI: 10.1016/j.compositesa.2015.05.023
Google Scholar