Preparation and Photocatalytic Properties of Graphene/SrTiO3 Thin Film Catalyst

Article Preview

Abstract:

A novel graphene-bridged SrTiO3 (STO) thin film loaded on the glass was fabricated using a facile sol-gel method followed by the dip-coating and spin-coating method. As-prepared STO film and GO/STO film were tested by XRD, SEM to identify the composition and surface morphology. The as-prepared thin film catalyst was employed to degrade methylene blue (MB) in water under near ultraviolet ray irradiation. Compared to pure STO, GO/STO prepared by dip-coating method displayed good photocatalytic degradation efficiency with 58% removal of MB (60 mL, 5mg/L) in 6.0 h, the GO/STO prepared by spin-coating method displayed more superior degradation efficiency with 94% removal of MB (60 mL,5mg/L) in 6.0 h. The influences of MB volume and the different methods were also investigated in details. The enhanced photocatalytic activities could be attributed to the suppression of charge recombination, high specific surface area and great adsorption capability of GO/STO. This work provides a promising approach to construct novel film GO/STO with high stability and photodegradation efficiency that can be applied in efficient treatment pollutants in wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-199

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. E. de-Bashan and Y. Bashan: Water Res Vol.38 (2004), pp.4222-46.

Google Scholar

[2] S. A. Ansari, M. M. Khan, M. O. Ansari and M. H. Cho: New Journal of Chemistry Vol.40 (2016), pp.3000-3009.

Google Scholar

[3] M. U. D. Sheikh, G. A. Naikoo, M. Thomas, M. Bano and F. Khan: New Journal of Chemistry Vol.40 (2016), pp.5483-5494.

Google Scholar

[4] M. Nasr, R. Viter, C. Eid, R. Habchi, P. Miele and M. Bechelany: New Journal of Chemistry Vol.41 (2017), pp.81-89.

DOI: 10.1039/c6nj03088b

Google Scholar

[5] R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan and A. Stephen: Journal of colloid and interface science Vol.452 (2015), pp.126-133.

DOI: 10.1016/j.jcis.2015.04.035

Google Scholar

[6] S. Rajendran, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta and S. Arumainathan: Scientific Reports Vol.6 (2016), p.31641.

Google Scholar

[7] R. Saravanan, N. Karthikeyan, V. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan and A. Stephen: Materials Science and Engineering: C Vol.33 (2013), pp.2235-2244.

DOI: 10.1016/j.msec.2013.01.046

Google Scholar

[8] H. C. Chen, C. W. Huang, J. C. S. Wu and S. T. Lin: Journal of Physical Chemistry C Vol.116 (2012), pp.7897-7903.

Google Scholar

[9] B. Paik, M. Tsubota, T. Ichikawa and Y. Kojima: Chemical Communications Vol.46 (2010), pp.3982-3984.

Google Scholar

[10] A. Bhattacharyya, S. Kawi and M. B. Ray: Catalysis Today Vol.98 (2004), pp.431-439.

Google Scholar

[11] B. F. Gao, P. S. Yap, T. M. Lim and T. T. Lim: Chemical Engineering Journal Vol.171 (2011), pp.1098-1107.

Google Scholar

[12] J. Cui, T. He and X. Zhang: Catalysis Communications Vol.40 (2013), pp.66-70.

Google Scholar

[13] Y. Wu, W. Chen, G. Chen, L. Liu, Z. He and R. Liu: Nanomaterials (Basel) Vol.8 (2018).

Google Scholar

[14] A. Antonello, G. Soliveri, D. Meroni, G. Cappelletti and S. Ardizzone: Catalysis Today Vol.230 (2014), pp.35-40.

DOI: 10.1016/j.cattod.2013.12.033

Google Scholar

[15] J. Zhu, Y. Cao and J. He: J Colloid Interface Sci Vol.420 (2014), pp.119-26.

Google Scholar

[16] R. S. Varma, N. Thorat, R. Fernandes, D. C. Kothari, N. Patel and A. Miotello: Catalysis Science & Technology Vol.6 (2016), pp.8428-8440.

Google Scholar

[17] N. Zhang, Y. Zhang and Y. J. Xu: Nanoscale Vol.4 (2012), pp.5792-813.

Google Scholar

[18] R. S. Sonawane, B. B. Kale and M. K. Dongare: Materials Chemistry and Physics Vol.85 (2004), pp.52-57.

Google Scholar

[19] D. Heger, J. Jirkovsky and P. Klan: J Phys Chem A Vol.109 (2005), pp.6702-9.

Google Scholar