The Features of Nanocomposite Structure Formation on the Surface of Metal Products under the Influence of Low-Temperature Plasma

Article Preview

Abstract:

The work presents the study of technological considerations of the nanocomposite structure formation on complex profile surfaces under the influence of low-temperature plasma aimed at wear resistance increase of metal products, the research being conducted on the novel plant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-179

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.G. Budinski, Surface Engineering for Wear Resistance, Prentice-Hall, Englewood Cliffs, (1988).

Google Scholar

[2] M. Horvath, M. Kralik, Hardening of surface layers, in: Acta Technica corvininesis, Bulletin of Engineering. 8-3 (2015) 138-139.

Google Scholar

[3] W. Bochnowski, The influence of arc plasma electric and laser treatment on the structure and properties of the high speed steel, ARCHIVES of FOUNDRY ENGINEERING. 9-3 (2009) 17-20.

Google Scholar

[4] Y.D. Shitsyn, D.S. Belinin, S. D. Neulybin, D.N. Trushnikov, Simulation of Heat Transfer in Reversed Polarity Current Plasma Surface Heat Treatment, J. Multidisciplinary Engineering Science and Technology (JMEST). 2-5 (2015) 1166-1168.

Google Scholar

[5] V.E. Gromov, Yu.F. Ivanov, S.V. Konovalov, Ye. Feng, D.A. Kosinov, Structure-scale levels of cast iron rolls plasma hardening, Vestnik MGTU im. G.I. Nosova. 14-2 (2016) 69-75.

DOI: 10.18503/1995-2732-2016-14-2-69-75

Google Scholar

[6] S. Grigoriev, M. Volosova, Y. Melnik, N. Cherkasova, Kombinierte Oberflächenbehandlung durch Vakuum-Plasmatechnik zur Erhöhung der Lebensdauer von Planfräsern aus Schnellerbeitstah, Materialwissenschaft und Werkstofftechnik. 46, 1 (2015) 10-15. DOI: 10.1002 / mawe.201400279.

DOI: 10.1002/mawe.201400279

Google Scholar

[7] S.N. Grigoriev, A.S. Metel, S.V. Fedorov, Modification of the structure and properties of high-speed steel by combined vacuum-plasma treatment, in: Metal Science and Heat Treatment. 54-1,2 (2012) 8-12. DOI: 10.1007 / s11041-012-9447-x.

DOI: 10.1007/s11041-012-9447-x

Google Scholar

[8] A.S. Metel, S.N. Grigoriev, Y.A. Melnik, V.V. Panin, Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge, Plasma Physics Reports. 35-12 (2009) 1058-1067. DOI: 10.1134 / S1063780X09120095.

DOI: 10.1134/s1063780x09120095

Google Scholar

[9] A.S. Metel, Plasma immersion ion implantation based on glow discharge with electrostatic confinement of electrons, Surface & Coatings Technology. 156-1,3 (2002) 38-43.

DOI: 10.1016/s0257-8972(02)00070-1

Google Scholar

[10] S.N. Grigoriev, A.S. Metel, M.A. Volosova, Y.A. Melnik, Surface hardening by means of plasma immersion ion implantation and nitriding in glow discharge with electrostatic confinement of electrons, Mechanics and Industry. 16, 711 (2015). DOI: 10.1051 / meca/2015093.

DOI: 10.1051/meca/2015093

Google Scholar

[11] C.A. Figueroa, F. Alvarez, D.RG. Mitchell, G.A. Collins, K.T. Short, Previous heat treatment inducing different plasma nitriding behaviors in martensitic stainless steels, J. Vac. Sci. Technol. B. 24, 1837 (2006).

DOI: 10.1116/1.2219759

Google Scholar

[12] B. Brzhozovskii, V. Martynov, E. Zinina, M. Brovkova, Composite ion-plasma coatings with nanodisperse reinforced phase: scientific and practical aspects of synthesis, IOP Conf. Series: Materials Science and Engineering. 116, 012028 (2016).

DOI: 10.1088/1757-899X/116/1/012007

Google Scholar

[13] B. Brzhozovsky, V. Martynov, E. Zinina, M. Brovkova, P. Bochkarev, The synthesis of nanocomposite structures on the surface of geometrically complex products, IOP Conf. Series: Materials Science and Engineering. 140, 012017 (2016).

DOI: 10.1088/1757-899X/140/1/012002

Google Scholar