Determination of the Thermal Conductivity of Metal-Polymers

Article Preview

Abstract:

The use of metal-polymers in the manufacture of mold-forming parts allows for the significant reduction in price and time used in manufacturing of parts. Using data on the thermal conductivity of metal-polymers in calculations of the cooling system of molds allows calculating the optimal cycle of obtaining the product. The authors propose a method of determining the coefficient of heat transfer of metal-polymers based on a die matrix, filled with aluminum. The chosen equipment or measuring tool by them, allows determining the heat transfer coefficient of the material in use. The values of the coefficient of heat transfer of the material in question, obtained in the course of the research can be use in different databases of applications used for modeling production by injection molding. The described method of determining the coefficient of heat transfer may be repeated for samples of metal-polymers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bichler, Parts from Plastmass - Cast without defects, Heidelberg: Tsechner, Speyer, 1999, p.112.

Google Scholar

[2] N.S. Lubimyi, M.S. Chepchurov, B.S. Chetverikov, N.A. Tabekina, E.I. Evtushenko, The technological heredity in the manufacture of the metal-polymeric build-forming molds, ARPN Journal of Engineering and Applied Sciences 11:20 (2016) 12302-12310.

Google Scholar

[3] N.S. Lubimyi, M.S. Chepchurov, E.I. Evtushenko, Thermostating calculation for combined metal-metal polymer press mold for plastic casting, International Journal of Pharmacy & Technology 8:4 (2016) 24889-24899.

Google Scholar

[4] Filatov, V.I. Technologicheskaya podgatovka protsessov formovaniya izdeliy' iz plast mass / V.I. Filatov, V.D. Korsakov. - L .: Politechnika, 1991. - 352 p.

Google Scholar

[5] M.V. Fabretto, D.R. Evans, M. Mueller, K. Zuber et al., Polymeric Material with Metal-Like Conductivity for Next Generation Organic Electronic Devices, Chemistry of Materials 24 (2012) 3998-4003.

DOI: 10.1021/cm302899v

Google Scholar

[6] Y. Xia, K. Sun, J. Ouyang, Solution–processed metallic conducting polymer films as transparent electrode of optoelectronic devices, Adv. Mater 24 (2012) 2436–2440.

DOI: 10.1002/adma.201104795

Google Scholar

[7] Pryamye izmereniya s mnogokratnymi nablyudeniyami (Direct measurements with multiple observations), GOST 8.207-76 IGG.

Google Scholar

[8] Normiruemye kharakteristiki sredstv izmereniya (Normalized characteristics of measuring instruments), GOST 8.0009-84 IGG.

Google Scholar

[9] A.D. Myshkis, Elementy teorii matematicheskikh modeley (The elements of mathematical theory and modeling), M.: KomKniga, 2007, p.192.

Google Scholar

[10] A.P. Babichev, N.A. Babushkina, A.M. Bratkovskiy et. al., Fizicheskiye velichiny: spravochnik (Physical Values: Reference Book), in I.S. Grigor'yeva, Ye.Z. Meylikhova (Eds.), M.: Energoatomizdat, 1991, p.1232.

Google Scholar

[11] E.F. Dolinskiy, Obrabotka rezul'tatov izmereniy (Calculation and Report), M.: Izd-vo standartov, 1973, p.192.

Google Scholar

[12] A.G. Korotkikh, Teploprovodnost' materialov: uchebnoye posobiye (Thermal Conductivity of Material: Student's book), Tomsk Polytechnic University, 2011, p.97.

Google Scholar

[13] A.F. Boyko, E.Y. Kudenkov, Tochnyy metod rascheta neobkhodimogo kolichestva povtornykh opytov (Precise technique for calculating a required number of replicated experiments), Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova (Bulletin of Belgorod State Technological University named after V.G. Shukhov) 8 (2016) 128–132.

DOI: 10.17277/vestnik.2016.03.pp.420-426

Google Scholar

[14] Statisticheskiye metody. Rukovodstvo po primeneniyu v sootvetstvii s GOST R ISO 9001 (Statistical methods: Manual instructions in accordance with GOST R ISO 9001), M.: Standartinform, GOST R ISO/TO 10017-2005. (2005).

DOI: 10.14489/hb.2014.07.pp.057-064

Google Scholar

[15] C. Bunks, J.P. Chancelier, F. Delebecque et. al., Engineering and Scientific Computing with Scilab, C. Gomez, Ed. Boston, Basel, Berlin: Birkh¨auser, (1998).

DOI: 10.1007/978-1-4612-1584-4

Google Scholar

[16] Scilab Enterprises. Scilab: Free and Open Source software for numerical computation (OS, Version 5.5.2), 2012, Information on http://www.scilab.org.

Google Scholar