Vector Approximation in the Roller Shells Nonlinear Calculations on the Fem Basis

Article Preview

Abstract:

In the curvilinear coordinate system, an approximation of the finite element required quantities in the vector formulation is developed with the implementation of the stiffness matrix of the volumetric finite element of the shell of rotation taking into account the geometric nonlinearity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

718-722

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. V. Novozhilov, Theory of thin shells, Sudpromgiz, Leningrad, (1962).

Google Scholar

[2] L. I. Sedov, Continuum Mechanics, Nauka, Moscow, (1970).

Google Scholar

[3] O. Zenkiewicz, K. Morgan, Finite elements and approximation, Mir, Moscow,(1986).

Google Scholar

[4] J. Oden, Finite elements in nonlinear continuum mechanics, Mir, Moscow,(1976).

Google Scholar

[5] K. Yu. Bate, Finite element Methods, Fizmatlit, Moscow, (2010).

Google Scholar

[6] N. Ah. Gureeva, Yu. V. Klochkov, A. P. Nikolaev, Defining relations in the curvilinear coordinate system of a physically linearly deformable body in a geometrically nonlinear formulation, Izv. Town. 23 (2014) 92-94.

Google Scholar

[7] A. P. Kiselev, Finite element Method in solving three-dimensional problems of elasticity theory, Scientific and technical journal Structural mechanics of engineering constructions and buildings,. 4 (2007) 11-17.

Google Scholar

[8] V. Papenhausen, Eine energiegerechte, inerementelle Formulieung der geometrisch nichtlinearen. Theorie elactischer Kontinua und ihre numerische Behanalund mit Hille Finiter Elemente, Tech.-wiss. Mitt. Just. Konstr. Jngenleurban Ruhr-Uni. Boctum, (1975).

Google Scholar