[1]
H.Y. Qasrawi, Concrete strength by combined nondestructive methods simply and reliably predicted, "Cement and Concrete Research,, vol. 30, no. 5 (2000), pp.739-746.
DOI: 10.1016/s0008-8846(00)00226-x
Google Scholar
[2]
I.A. Basheer, and M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application,, Journal of Microbiological Methods, vol. 43, no. 1 (2000) , pp.3-31.
DOI: 10.1016/s0167-7012(00)00201-3
Google Scholar
[3]
W. L. Huang, C. Y. Chang, W. C. Chen, C. N. We: Using ANNs to Improve Prediction Accuracy for Rebound Hammers, Taiwan Highway Engineering, vol. 37, no. 2 (2001), pp.2-18.
Google Scholar
[4]
Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M. and Pereira, M. C.: Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software, 22(1) (2007), pp.97-103.
DOI: 10.1016/j.envsoft.2005.12.002
Google Scholar
[5]
Sadrmomtazi, A., J. Sobhani, and M. A. Mirgozar: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS, Construction and Building Materials 42 (2013), pp.205-216.
DOI: 10.1016/j.conbuildmat.2013.01.016
Google Scholar
[6]
Brencich, A., Cassini, G., Pera, D. and Riotto, G.: Calibration and reliability of the rebound (Schmidt) hammer test. Civil Engineering and Architecture, 1(3) (2013), pp.66-78.
DOI: 10.13189/cea.2013.010303
Google Scholar
[7]
Information on https://theconstructor.org/concrete/rebound-hammer-test-concrete-ndt/2837/.
Google Scholar
[8]
Qasrawi, H. Y.: Concrete strength by combined nondestructive methods simply and reliably predicted, Cement and concrete research 30.5 (2000), pp.739-746.
DOI: 10.1016/s0008-8846(00)00226-x
Google Scholar
[9]
Breysse, D., and Martínez-Fernández, J. L.: Assessing concrete strength with rebound hammer: review of key issues and ideas for more reliable conclusions. Materials and structures, 47(9) (2014), pp.1589-1604.
DOI: 10.1617/s11527-013-0139-9
Google Scholar
[10]
Brencich, A., Cassini, G., Pera, D., & Riotto, G.: Calibration and reliability of the rebound (Schmidt) hammer test. Civil Engineering and Architecture, 1(3) (2013), pp.66-78.
DOI: 10.13189/cea.2013.010303
Google Scholar
[11]
Jang, J. S. R.: ANFIS:Adaptive-Network-Based Fuzzy Inference System, IEEE Transactions on Systems, Man and Cybernetics 23 (3) (1993), pp.665-685.
DOI: 10.1109/21.256541
Google Scholar
[12]
Abraham, A.: Adaptation of Fuzzy Inference System Using Neural Learning, Studies in Fuzziness and Soft Computing 181 (2005), pp.53-83.
DOI: 10.1007/11339366_3
Google Scholar
[13]
Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H.: Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information processing in agriculture, 1(1) (2014), pp.14-22.
DOI: 10.1016/j.inpa.2014.04.001
Google Scholar
[14]
Abdulshahed, A. M., Longstaff, P. and Fletcher, A.: The application of ANFIS prediction models for thermal error compensation on CNC machine tools, Applied Soft Computing 27 (2015), pp.158-168.
DOI: 10.1016/j.asoc.2014.11.012
Google Scholar
[15]
Vural, Y., Ingham, D. B., and Pourkashanian, M.: Performance prediction of a proton exchange membrane fuel cell using the ANFIS model, International Journal of Hydrogen Energy, 34(22) (2009), pp.9181-9187.
DOI: 10.1016/j.ijhydene.2009.08.096
Google Scholar
[16]
Boyacioglu, M. A., and Avci, D.: An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange, Expert Systems with Applications, 37(12) (2010), pp.7908-7912.
DOI: 10.1016/j.eswa.2010.04.045
Google Scholar