Effect of Weld Zone Shape on Microstructure and Tensile Properties in Friction Stir Welding Process

Article Preview

Abstract:

This article presents the effect of weld zone shapes on microstructure and tensile properties of weld joints in friction stir welding. Experiments are conducted using four different tool pin profiles that are cylindrical, conical, cylindrical-conical and stepped-conical for analysing the weld zone shape. The weld zone shape properties are defined by characteristic length. Grain size and mode of fracture surface behavior are analysed by optical microscope and scanning microscope respectively and tensile strength is measured by universal testing machine. It is also observed that the weld zone shape of all pin profile tool is vase shape. In which, cylindrical, conical and cylindrical-conical pin profile tools produce basin dominant vase shape and stepped-conical pin profile tool produces cylinder dominant vase shape. The experimental result shows that the weld joint fabricated by stepped-conical pin profile tool produces the smallest grain, good ductile fracture mode and highest tensile properties as compared to other pin profile tool. This analysis shows that cylinder dominant vase shape produces high tensile properties and enhance ductile fracture mode in the weld joint.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-90

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. T. Gibson, D. H. Lammlein, T. J. Prater, W. R. Longhurst, C. D. Cox, M. C. Ballun, K. J. Dharmaraj, G. E. Cook, and A. M. Strauss, Friction stir welding: process, automation, and control, J Manuf Process. (2014); 16(1):56-73.

DOI: 10.1016/j.jmapro.2013.04.002

Google Scholar

[2] S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints, Trans Nonferrous Met Soc of China. (2010); 20(10):1863-72.

DOI: 10.1016/s1003-6326(09)60387-3

Google Scholar

[3] M. H. Shojaeefard, A. Khalkhali, M. Akbari, and P. Asadi, Investigation of friction stir welding tool parameters using FEM and neural network, Proceedings of the Institution of Tensile Engineers, Part L: J Mater: Des Applica. (2015); 229(3):209-17.

DOI: 10.1177/1464420713509075

Google Scholar

[4] W. M. Thomas, K. I. Johnson, and C. S. Wiesner, Friction stir welding–recent developments in tool and process technologies, Advanc Eng Mater. (2003); 5(7):485-90.

DOI: 10.1002/adem.200300355

Google Scholar

[5] R. S, Mishra, and Z. Y. Ma, Friction stir welding and processing." Mater Sci Eng : R: Reports. (2005);50(1):1-78.

Google Scholar

[6] He Xiaocong, F. Gu, and A. Ball, A review of numerical analysis of friction stir welding, Progress in Mater Sci. (2014);65:1-66.

DOI: 10.1016/j.pmatsci.2014.03.003

Google Scholar

[7] Y.H. Zhao, S. B. Lin, F. X. Qu, and L. Wu, Influence of pin geometry on material flow in friction stir welding process, Mater letters. (2005); 59(23):2948-52.

DOI: 10.1016/j.matlet.2005.04.048

Google Scholar

[8] O. Lorrain, , V. Favier, H. Zahrouni, and D. Lawrjaniec, Understanding the material flow path of friction stir welding process using unthreaded tools, J Mater Process Technol. (2010); 210(4):603-9.

DOI: 10.1016/j.jmatprotec.2009.11.005

Google Scholar

[9] A. F. Hasan, C. J. Bennett, and P. H. Shipway, A numerical comparison of the flow behaviour in Friction Stir Welding (FSW) using unworn and worn tool geometries, Mater Des. (2015); 87:1037-46.

DOI: 10.1016/j.matdes.2015.08.016

Google Scholar

[10] J. Marzbanrad, , M. Akbari, P. Asadi, and S. Safaee, Characterization of the influence of tool pin profile on microstructural and mechanical properties of friction stir welding, Metall Mater Trans B. (2014);45(5):1887-94.

DOI: 10.1007/s11663-014-0089-9

Google Scholar

[11] C. N. Suresha, B. M. Rajaprakash, and S. Upadhya, A study of the effect of tool pin profiles on tensile strength of welded joints produced using friction stir welding process, Mater Manuf Process. (2011); 26(9):1111-6.

DOI: 10.1080/10426914.2010.532527

Google Scholar

[12] H. J. Liu, H. Fujii, M. Maeda, and K. Nogi, Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy, J Mater Process Technol. (2003); 142(3):692-6.

DOI: 10.1016/s0924-0136(03)00806-9

Google Scholar

[13] S. Muthukumaran, and S. K. Mukherjee, Multi-layered metal flow and formation of onion rings in friction stir welds, Int J Advanc Manuf Technol. (2008); 38(1):68-73.

DOI: 10.1007/s00170-007-1071-3

Google Scholar

[14] K. S. Kumar, V. K., and S. V. Kailas, The role of friction stir welding tool on material flow and weld formation, Mater Sci Eng : A. (2008); 485(1):367-74.

DOI: 10.1016/j.msea.2007.08.013

Google Scholar

[15] O. Lorrain, V. Favier, H. Zahrouni, and D. Lawrjaniec, Friction stir welding using unthreaded tools: analysis of the flow, Int J Mater For . (2010); 3:1043-6.

DOI: 10.1007/s12289-010-0949-z

Google Scholar

[16] O. Lorrain, , J. Serri, V. Favier, H. Zahrouni, and M. El Hadrouz, A contribution to a critical review of friction stir welding numerical simulation, J mech mater struct. (2009); 4(2):351-69.

DOI: 10.2140/jomms.2009.4.351

Google Scholar

[17] A, Dorbane, G. Ayoub, B. Mansoor, R. F. Hamade, and A. Imad, Effect of Temperature on Microstructure and Fracture Mechanisms in Friction Stir Welded Al6061 Joints, J Mater Eng Perf. (2017); 26(6):2542-54.

DOI: 10.1007/s11665-017-2704-9

Google Scholar

[18] E. Salari, M. Jahazi, A. Khodabandeh, and H. Ghasemi-Nanesa, Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets, Mater Des. (2014); 58:381-9.

DOI: 10.1016/j.matdes.2014.02.005

Google Scholar

[19] P. Prakash, S. K. Jha, and S. P. Lal, Effect of Tool-Pin Profile on Weld Zone and Mechanical Properties in Friction Stir Welding of Aluminium Alloy, Pertanika J of Sci.& Tech. (2018). 26, no. 2.

Google Scholar