Influence of Rare Earth Elements in Magnesium Alloy - A Mini Review

Article Preview

Abstract:

In recent days, the use of Magnesium and its alloys is preferred in defence, automotive and aerospace industries where large size and complex components are required in light weight. Besides, magnesium alloys are used in computers, electronic devices and biomedical applications. Alloying magnesium with rare earth elements (RE) is used to develop the light alloys for the stated applications at elevated temperature. Rare earth magnesium alloys are having unique properties over other metals, including a high specific strength, low thermal conductivity, good damping capacity and good castability. In this review article, the recent development of rare earth magnesium alloys will be reviewed from the view point of novel alloying designs. It has been revealed that in ternary alloy system Mg-ZN-RE alloy exhibited high strength and ductility. This leads the researchers to investigate Mg-ZN-RE alloy recently.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-166

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Khomamizadeh, F, Nami, B. & Khoshkhooei, S., Metallurgical and Materials Transactions, A 3489-3494, (2005).

Google Scholar

[2] B.L. Mordike, T. Ebert, Mater. Sci. Eng.: A 302 (1) 37–45, (2001).

Google Scholar

[3] V. Paradisoa, F. Rubinoa, P. Carlonea , G. S. Palazzoa, Magnesium and Aluminium alloys dissimilar joining by Friction Stir Welding, 17th International Conference on Sheet Metal, SHEMET17, Procedia Engineering 183, 2017, 239 – 244.

DOI: 10.1016/j.proeng.2017.04.028

Google Scholar

[4] Gergoric, M., Ekberg, C., Steenari, B.-M., & Retegan, T., Separation of Heavy Rare-Earth Elements from Light Rare-Earth Elements Via Solvent Extraction from a Neodymium Magnet Leachate and the Effects of Diluents, Journal of Sustainable Metallurgy, 2017, 3(3), 601–610.

DOI: 10.1007/s40831-017-0117-5

Google Scholar

[5] M. Suzuki, T. Kimura, J. Koike, K. Maruyamaa, Mater. Sci. Eng. A 387, 2004, 706–709.

Google Scholar

[6] Zhao, H.D., Qin, G.W., Ren, Y.P., Pei, W.L., Chen, D., Guo, Y. The maximum solubility of Y in α-Mg and composition ranges of Mg24Y5−x and Mg2Y1−x intermetallic phases in Mg–Y binary system. J. Alloy. Compd., 2011, 509, 627–631.

DOI: 10.1016/j.jallcom.2010.09.120

Google Scholar

[7] E. D. Gibson and O. N. Carlson, The yttrium-magnesium alloy system, Transactions of American Society for Metals, Vol 52pp-1084-1096.

Google Scholar

[8] Z. A. Sviderskaya and E. M. Padezhnova, Phase equilibriums in magnesium-yttrium and magnesium-yttrium-manganese sys-tems, Izvestiya Akademii Nauk SSSR, Metally, p.183–190.

Google Scholar

[9] Gao, L., Chen, R.S., Han, E.H., Solid solution strengthening behaviors in binary Mg–Y single phase alloys, Journal of. Alloy. Compd. 2009, 472, 234–240.

DOI: 10.1016/j.jallcom.2008.04.049

Google Scholar

[10] Gu, X., Zheng, Y., Cheng, Y., Zhong, S., Xi, T., In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 2009, 30, 484–498.

DOI: 10.1016/j.biomaterials.2008.10.021

Google Scholar

[11] Zhou, N., Zhang, Z., Jin, L., Dong, J., Chen, B., Ding, W. Ductility improvement by twinning and twin–slip interaction in a Mg-Y alloy. Mater. Des., 2014, 56, 966–974.

DOI: 10.1016/j.matdes.2013.12.014

Google Scholar

[12] Sandlöbes, S., Zaefferer, S., Schestakow, I., Yi, S., Gonzalez-Martinez, R. On the role of non-basal deformation mechanisms for the ductility of mg and Mg–Y alloys. Acta Mater., 2011, 59, 429–439.

DOI: 10.1016/j.actamat.2010.08.031

Google Scholar

[13] YasumasaChino , MotohisaKado , MamoruMabuchi Compressive deformation behavior at room temperature – 773 K in Mg–0.2 mass%(0.035at.%)Ce alloy, Acta Materialia Volume 56, Issue 3, February 2008, Pages 387-394.

DOI: 10.1016/j.actamat.2007.09.036

Google Scholar

[14] Mishra, R.K., Gupta, A.K., Rao, P.R., Sachdev, A.K., Kumar, A.M., Luo, A.A. Influence of cerium on the texture and ductility of magnesium extrusions. Scripta Mater. 2008, 59, 562–565.

DOI: 10.1016/j.scriptamat.2008.05.019

Google Scholar

[15] Chino, Y., Kado, M., Mabuchi, M. Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt%(0.035 at%)Ce. Mater. Sci. Eng. A 2008, 494, 343–349.

DOI: 10.1016/j.msea.2008.04.059

Google Scholar

[16] Luo, A.A., Wu, W., Mishra, R.K., Jin, L., Sachdev, A.K., Ding, W., Microstructure and mechanical properties of extruded magnesium-aluminum-cerium alloy tubes, Metall. Mater. Trans. A 2010, 41, 2662–2674.

DOI: 10.1007/s11661-010-0278-3

Google Scholar

[17] Chia, T.L., Easton, M.A., Zhu, S.M., Gibson, M.A., Birbilis, N., Nie, J.F. The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys. Intermetallics, 2009, 17, 481–490.

DOI: 10.1016/j.intermet.2008.12.009

Google Scholar

[18] Peng, Q., Wu, Y., Fang, D., Meng, J., Wang, L. Microstructures and properties of melt-spun and as-cast Mg-20Gd binary alloy. J. Rare Earths 2006, 24, 466–470.

DOI: 10.1016/s1002-0721(06)60145-2

Google Scholar

[19] Hort, N., Huang, Y., Fechner, D., Störmer, M., Blawert, C., Witte, F., Vogt, C., Drücker, H., Willumeit, R., Kainer, K.U., et al. Magnesium alloys as implant materials—Principles of property design for Mg–RE alloys. Acta Biomater. 2010, 6, 1714–1725.

DOI: 10.1016/j.actbio.2009.09.010

Google Scholar

[20] Gao, L., Chen, R.S., Han, E.H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of mg alloys. J. Alloy. Compd. 2009, 481, 379–384.

DOI: 10.1016/j.jallcom.2009.02.131

Google Scholar

[21] Stanford, N., Atwell, D., Barnett, M.R. The effect of gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater. 2010, 58, 6773–6783.

DOI: 10.1016/j.actamat.2010.09.003

Google Scholar

[22] Stanford, N., Barnett, M.R. The origin of rare earth, texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A 2008, 496, 399–408.

DOI: 10.1016/j.msea.2008.05.045

Google Scholar

[23] Seitz, J.M., Eifler, R., Stahl, J., Kietzmann, M., Bach, F.W. Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices. Acta Biomater. 2012, 8, 3852–3864.

DOI: 10.1016/j.actbio.2012.05.024

Google Scholar

[24] Sihang You, Yuanding Huang, Karl Ulrich Kainer, Norbert Hort, Recent research and developments on wrought magnesium alloys, Journal of Magnesium and Alloys, 2017, 239–253.

DOI: 10.1016/j.jma.2017.09.001

Google Scholar

[25] Le, Q.-C., Zhang, Z.-Q., Shao, Z.-W., Cui, J.-Z., Xie, Y. Microstructures and mechanical properties of Mg-2%Zn-0.4%Re alloys. Trans. Nonferrous Metals Soc. China 2010, 20, s352–s356.

DOI: 10.1016/s1003-6326(10)60496-7

Google Scholar

[26] Zhao, X.-F., Li, S.-B., Wang, Q.-F., Du, W.-B., Liu, K. Effects of heat treatment on microstructure and mechanical properties of Mg–5Zn–0.63Er alloy. Trans. Nonferrous Metals Soc. China 2013, 23, 59–65.

DOI: 10.1016/s1003-6326(13)62429-2

Google Scholar