[1]
Khomamizadeh, F, Nami, B. & Khoshkhooei, S., Metallurgical and Materials Transactions, A 3489-3494, (2005).
Google Scholar
[2]
B.L. Mordike, T. Ebert, Mater. Sci. Eng.: A 302 (1) 37–45, (2001).
Google Scholar
[3]
V. Paradisoa, F. Rubinoa, P. Carlonea , G. S. Palazzoa, Magnesium and Aluminium alloys dissimilar joining by Friction Stir Welding, 17th International Conference on Sheet Metal, SHEMET17, Procedia Engineering 183, 2017, 239 – 244.
DOI: 10.1016/j.proeng.2017.04.028
Google Scholar
[4]
Gergoric, M., Ekberg, C., Steenari, B.-M., & Retegan, T., Separation of Heavy Rare-Earth Elements from Light Rare-Earth Elements Via Solvent Extraction from a Neodymium Magnet Leachate and the Effects of Diluents, Journal of Sustainable Metallurgy, 2017, 3(3), 601–610.
DOI: 10.1007/s40831-017-0117-5
Google Scholar
[5]
M. Suzuki, T. Kimura, J. Koike, K. Maruyamaa, Mater. Sci. Eng. A 387, 2004, 706–709.
Google Scholar
[6]
Zhao, H.D., Qin, G.W., Ren, Y.P., Pei, W.L., Chen, D., Guo, Y. The maximum solubility of Y in α-Mg and composition ranges of Mg24Y5−x and Mg2Y1−x intermetallic phases in Mg–Y binary system. J. Alloy. Compd., 2011, 509, 627–631.
DOI: 10.1016/j.jallcom.2010.09.120
Google Scholar
[7]
E. D. Gibson and O. N. Carlson, The yttrium-magnesium alloy system, Transactions of American Society for Metals, Vol 52pp-1084-1096.
Google Scholar
[8]
Z. A. Sviderskaya and E. M. Padezhnova, Phase equilibriums in magnesium-yttrium and magnesium-yttrium-manganese sys-tems, Izvestiya Akademii Nauk SSSR, Metally, p.183–190.
Google Scholar
[9]
Gao, L., Chen, R.S., Han, E.H., Solid solution strengthening behaviors in binary Mg–Y single phase alloys, Journal of. Alloy. Compd. 2009, 472, 234–240.
DOI: 10.1016/j.jallcom.2008.04.049
Google Scholar
[10]
Gu, X., Zheng, Y., Cheng, Y., Zhong, S., Xi, T., In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 2009, 30, 484–498.
DOI: 10.1016/j.biomaterials.2008.10.021
Google Scholar
[11]
Zhou, N., Zhang, Z., Jin, L., Dong, J., Chen, B., Ding, W. Ductility improvement by twinning and twin–slip interaction in a Mg-Y alloy. Mater. Des., 2014, 56, 966–974.
DOI: 10.1016/j.matdes.2013.12.014
Google Scholar
[12]
Sandlöbes, S., Zaefferer, S., Schestakow, I., Yi, S., Gonzalez-Martinez, R. On the role of non-basal deformation mechanisms for the ductility of mg and Mg–Y alloys. Acta Mater., 2011, 59, 429–439.
DOI: 10.1016/j.actamat.2010.08.031
Google Scholar
[13]
YasumasaChino , MotohisaKado , MamoruMabuchi Compressive deformation behavior at room temperature – 773 K in Mg–0.2 mass%(0.035at.%)Ce alloy, Acta Materialia Volume 56, Issue 3, February 2008, Pages 387-394.
DOI: 10.1016/j.actamat.2007.09.036
Google Scholar
[14]
Mishra, R.K., Gupta, A.K., Rao, P.R., Sachdev, A.K., Kumar, A.M., Luo, A.A. Influence of cerium on the texture and ductility of magnesium extrusions. Scripta Mater. 2008, 59, 562–565.
DOI: 10.1016/j.scriptamat.2008.05.019
Google Scholar
[15]
Chino, Y., Kado, M., Mabuchi, M. Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt%(0.035 at%)Ce. Mater. Sci. Eng. A 2008, 494, 343–349.
DOI: 10.1016/j.msea.2008.04.059
Google Scholar
[16]
Luo, A.A., Wu, W., Mishra, R.K., Jin, L., Sachdev, A.K., Ding, W., Microstructure and mechanical properties of extruded magnesium-aluminum-cerium alloy tubes, Metall. Mater. Trans. A 2010, 41, 2662–2674.
DOI: 10.1007/s11661-010-0278-3
Google Scholar
[17]
Chia, T.L., Easton, M.A., Zhu, S.M., Gibson, M.A., Birbilis, N., Nie, J.F. The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys. Intermetallics, 2009, 17, 481–490.
DOI: 10.1016/j.intermet.2008.12.009
Google Scholar
[18]
Peng, Q., Wu, Y., Fang, D., Meng, J., Wang, L. Microstructures and properties of melt-spun and as-cast Mg-20Gd binary alloy. J. Rare Earths 2006, 24, 466–470.
DOI: 10.1016/s1002-0721(06)60145-2
Google Scholar
[19]
Hort, N., Huang, Y., Fechner, D., Störmer, M., Blawert, C., Witte, F., Vogt, C., Drücker, H., Willumeit, R., Kainer, K.U., et al. Magnesium alloys as implant materials—Principles of property design for Mg–RE alloys. Acta Biomater. 2010, 6, 1714–1725.
DOI: 10.1016/j.actbio.2009.09.010
Google Scholar
[20]
Gao, L., Chen, R.S., Han, E.H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of mg alloys. J. Alloy. Compd. 2009, 481, 379–384.
DOI: 10.1016/j.jallcom.2009.02.131
Google Scholar
[21]
Stanford, N., Atwell, D., Barnett, M.R. The effect of gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater. 2010, 58, 6773–6783.
DOI: 10.1016/j.actamat.2010.09.003
Google Scholar
[22]
Stanford, N., Barnett, M.R. The origin of rare earth, texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A 2008, 496, 399–408.
DOI: 10.1016/j.msea.2008.05.045
Google Scholar
[23]
Seitz, J.M., Eifler, R., Stahl, J., Kietzmann, M., Bach, F.W. Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices. Acta Biomater. 2012, 8, 3852–3864.
DOI: 10.1016/j.actbio.2012.05.024
Google Scholar
[24]
Sihang You, Yuanding Huang, Karl Ulrich Kainer, Norbert Hort, Recent research and developments on wrought magnesium alloys, Journal of Magnesium and Alloys, 2017, 239–253.
DOI: 10.1016/j.jma.2017.09.001
Google Scholar
[25]
Le, Q.-C., Zhang, Z.-Q., Shao, Z.-W., Cui, J.-Z., Xie, Y. Microstructures and mechanical properties of Mg-2%Zn-0.4%Re alloys. Trans. Nonferrous Metals Soc. China 2010, 20, s352–s356.
DOI: 10.1016/s1003-6326(10)60496-7
Google Scholar
[26]
Zhao, X.-F., Li, S.-B., Wang, Q.-F., Du, W.-B., Liu, K. Effects of heat treatment on microstructure and mechanical properties of Mg–5Zn–0.63Er alloy. Trans. Nonferrous Metals Soc. China 2013, 23, 59–65.
DOI: 10.1016/s1003-6326(13)62429-2
Google Scholar