Conduction Properties Study on Alginate Incorporated with Glycolic Acid Based Solid Biopolymer Electrolytes

Article Preview

Abstract:

This present work focuses on the conduction properties investigation on solid biopolymer electrolytes (SBEs) based alginate doped with various composition of glycolic acid (GA). The film was successfully prepared via solution casting technique and was characterized for conduction properties by using impedance spectroscopy. Based on ionic conductivity study, sample containing with 20 wt. % of GA possessed an optimum ionic conductivity of 5.32 × 10-5 Scm−1 at ambient temperature (303 K). The dielectric analysis revealed the highest ionic conductivity sample based alginate-GA SBEs has the highest dielectric constant and loss and increased significantly when temperature increases at ambient temperature. The dielectric properties shows that the entire alginate-GA SBEs are non-Debye behavior where there is no single relaxation occurred in the present system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-39

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Muthukrishnan, C. Shanthi, S. Selvasekarapandian, R. Manjuladevi, P. Perumal,P. Chrishtopher Selvin, Synthesis and characterization of pectin-based biopolymer electrolyte for electrochemical applications. Ionics (2018) 1-12.

DOI: 10.1007/s11581-018-2568-5

Google Scholar

[2] N.F. Mazuki, A.F. Fuzlin, M.A. Saadiah A.S. Samsudin, An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system. Ionics (2018) 1-11.

DOI: 10.1007/s11581-018-2734-9

Google Scholar

[3] M. Fertah, A. Belfkira, M. Taourirte,F. Brouillette, Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 10 (2017) S3707-S14.

DOI: 10.1016/j.arabjc.2014.05.003

Google Scholar

[4] M. Jha, G. Chakraborty, S. Bardhan, B. Debnath S.K. Saha, Unperturbed dimension, interaction parameters, zeta potential and rheology of sodium alginate in binary solvent mixtures. Journal of Polymer Research 23 (2016) 162.

DOI: 10.1007/s10965-016-1057-7

Google Scholar

[5] R. Karthik,S. Meenakshi, Removal of Cr (VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72 (2015) 711-17.

DOI: 10.1016/j.ijbiomac.2014.09.023

Google Scholar

[6] A. Pawlicka, F.C. Tavares, D.S. Dörr, C.M. Cholant, F. Ely, M.J.L. Santos C.O. Avellaneda, Dielectric behavior and FTIR studies of xanthan gum-based solid polymer electrolytes. Electrochim Acta 305 (2019) 232-39.

DOI: 10.1016/j.electacta.2019.03.055

Google Scholar

[7] V. Moniha, M. Alagar, S. Selvasekarapandian, B. Sundaresan,G. Boopathi, Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481 (2018) 424-34.

DOI: 10.1016/j.jnoncrysol.2017.11.027

Google Scholar

[8] S. Patel,R. Kumar, Synthesis and characterization of magnesium ion conductivity in PVDF based nanocomposite polymer electrolytes disperse with MgO. J Alloys Compd 789 (2019) 6-14.

DOI: 10.1016/j.jallcom.2019.03.089

Google Scholar

[9] M. Hema, S. Selvasekerapandian, A. Sakunthala, D. Arunkumar,H. Nithya, Structural, vibrational and electrical characterization of PVA–NH4Br polymer electrolyte system. Physica B: Condens Matter 403 (2008) 2740-47.

DOI: 10.1016/j.physb.2008.02.001

Google Scholar

[10] A.F. Fuzlin, N.M.J. Rasali A.S. Samsudin. Effect on Ammonium Bromide in dielectric behavior based Alginate Solid Biopolymer electrolytes; 2018, IOP Publishing.

DOI: 10.1088/1757-899x/342/1/012080

Google Scholar

[11] N.M.J. Rasali, Y. Nagao A.S. Samsudin, Enhancement on amorphous phase in solid biopolymer electrolyte based alginate doped NH4NO3. Ionics (2018) 1-14.

DOI: 10.1007/s11581-018-2667-3

Google Scholar

[12] M.L.H. Rozali, A.S. Samsudin M.I.N. Isa, Ion conducting mechanism of carboxy methylcellulose doped with ionic dopant salicylic acid based solid polymer electrolytes. Int J Appl 2 (2012) 113-21.

Google Scholar

[13] P. Perumal, P.C. Selvin, S. Selvasekarapandian,P. Sivaraj, Structural and Electrical Properties of Bio-polymer Pectin with LiClO4 Solid Electrolytes for Lithium Ion Polymer Batteries. Mater, Today: Proceedings 8 (2019) 196-202.

DOI: 10.1016/j.matpr.2019.02.100

Google Scholar

[14] M.S.A. Rani, N.A. Dzulkurnain, A. Ahmad N.S. Mohamed, Conductivity and dielectric behavior studies of carboxymethyl cellulose from kenaf bast fiber incorporated with ammonium acetate-BMATFSI biopolymer electrolytes. Int J Polym Anal Charact 20 (2015) 250-60.

DOI: 10.1080/1023666x.2015.1013176

Google Scholar

[15] A.F.A. Fuzlin, N.S. Ismail, Y. Nagao A.S. Samsudin, Electrical Properties of A Novel Solid Biopolymer Electrolyte based on Algi-nate Incorporated with Citric Acid. Makara J Tech 23 (2019) 48-52.

DOI: 10.7454/mst.v23i1.3643

Google Scholar

[16] K.S. Ngai, S. Ramesh, K. Ramesh J.C. Juan, Electrical, dielectric and electrochemical characterization of novel poly (acrylic acid)-based polymer electrolytes complexed with lithium tetrafluoroborate. Chem Phys Lett 692 (2018) 19-27.

DOI: 10.1016/j.cplett.2017.11.042

Google Scholar

[17] H.J. Woo, S.R. Majid A.K. Arof, Dielectric properties and morphology of polymer electrolyte based on poly (ɛ-caprolactone) and ammonium thiocyanate. Mater Chem Phys 134 (2012) 755-61.

DOI: 10.1016/j.matchemphys.2012.03.064

Google Scholar

[18] N. Vijaya, S. Selvasekarapandian, M. Sornalatha, K.S. Sujithra,S. Monisha, Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X= Cl, Br). Ionics 23 (2017) 2799-808.

DOI: 10.1007/s11581-016-1852-5

Google Scholar