Effects of Bismuth Content on the Microstructure, Shear Strength and Thermal Properties of Sn-0.7Cu-0.05Ni Solder Joints

Article Preview

Abstract:

The effects of bismuth content on the microstructure, shear strength and thermal properties of Sn-0.7Cu-0.05Ni solder joints were investigated. Adding 2 wt% elemental Bi to Sn-0.7Cu-0.05Ni solder joints reduced peak temperature by about 6.7 °C, increased pasty range by 4.2 °C and raised undercooling by 3.1 °C. The microstructure of the interfacial layer between solder and Cu substrate was composed of (Cu,Ni)6Sn5 and (Cu,Ni)3Sn intermetallic compounds (IMCs). The solder joint included a phase of SnBi and Cu6Sn5 IMCs. The addition of elemental Bi increased shear strength and suppressed the growth of IMCs in the interfacial layer of the solder joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-120

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, N.B. Wong and W.K.C. Yung: J. Alloys Compds. Vol. 506 (2010), p.216.

Google Scholar

[2] G. Zeng, S. Xue, L. Zhang, L. Gao, Z. Lai and J. Luo: J. Mater. Sci. Vol. 22 (2011), p.1101.

Google Scholar

[3] L. Zhang, S. Xue, L. Gao, Z. Sheng, H. Ye, Z. Xiao, G. Zeng, Y. Chen and S. Yu: J. Mater. Sci. Vol. 21 (2010), p.1.

Google Scholar

[4] S.K. Seo, S.K. Kang, D.Y. Shih and H.M. Lee: Microelectron. Reliab. Vol. 49 (2009), p.288.

Google Scholar

[5] K. Nogita: Intermetallics Vol. 18 (2010), p.145.

Google Scholar

[6] S.A. Belyakov, J.W. Xian, K. Sweatman, T. Nishimura, T. Akaiwa and C.M. Gourlay: J. Alloys Compds. Vol. 701 (2017), p.321.

DOI: 10.1016/j.jallcom.2016.12.404

Google Scholar

[7] P.T. Vianco and J.A. Rejent: J. Electron. Mater. Vol. 28 (1999), p.1127.

Google Scholar

[8] Y. Liu, F.L. Sun, Y. Liu and X.M. Li: J. Mater. Sci. Mater. Electron. Vol. 25 (2014), p.2627.

Google Scholar

[9] J. Zhao, L. Qi, X.M. Wang and L. Wang: J. Alloy Compds. Vol. 375 (2004), p.196.

Google Scholar

[10] P.T. Vianco and J.A. Rejent: J. Electron. Mater. Vol. 28 (1999), p.1138.

Google Scholar

[11] J. Shen, Y. Pu, D. Wu, Q. Tang and M. Zhao: J. Mater. Sci. Mater. Electron. Vol. 26 (2015), p.1572.

Google Scholar

[12] X. Hu, Y. Li and Z. Min: J. Alloys Compds. Vol. 582 (2014), p.341.

Google Scholar

[13] U.R. Kattner and W.J. Boettinger: J. Electron. Mater. Vol. 23 (1994), p.603.

Google Scholar

[14] A.A. El-Daly, A.M. El-Taher and S. Gouda: Mater. Design Vol. 65 (2015), p.796.

Google Scholar

[15] X. Hu, Y. Li, Y. Liu and Z. Min: J. Alloys Compds. Vol. 625 (2015), p.241.

Google Scholar

[16] J.X. Wang, M. Yin, Z.M. Lai and X. Li: Trans. China Weld. Inst. 3Vol. 2 (2011), p.69.

Google Scholar

[17] J.W. Yoon, Y.H. Lee, D.G. Kim, H.B. Kang, S.J. Suh, C.W. Yang, C.B. Lee, J.M. Jung, C.S. Yoo and S.B. Jung: J. Alloys Compds. Vol. 381 (2004), p.151.

Google Scholar

[18] M.I.I Ramli, N. Saud, M.A.A. Mohd Salleh, M.N. Derman and R. Mohd Said: Microelectron. Reliab. Vol. 65 (2016), p.255.

Google Scholar