[1]
T. Ozbakkaloglu: Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters, Engineering Structures, vol. 51 (2013), pp.188-199.
DOI: 10.1016/j.engstruct.2013.01.017
Google Scholar
[2]
X. Song, X. Gu, Y. Li, et al: Mechanical behavior of FRP-strengthened concrete columns subjected to concentric and eccentric compression loading, Journal of Composites for Construction, vol. 17, no. 3 (2013), pp.336-346.
DOI: 10.1061/(asce)cc.1943-5614.0000351
Google Scholar
[3]
J. F. Chen, S. Q. Li, and L. A. Bisby: Factors affecting the ultimate condition of FRP-wrapped concrete columns, Journal of Composites for Construction, vol. 17, no. 1 (2013), pp.67-78.
DOI: 10.1061/(asce)cc.1943-5614.0000314
Google Scholar
[4]
K. S. Youm, J. Y. Cho, Y. H. Lee, et al: Seismic performance of modular columns made of concrete filled FRP tubes, Engineering Structures, vol. 57 (2013), pp.37-50.
DOI: 10.1016/j.engstruct.2013.09.001
Google Scholar
[5]
P. Zohrevand, A. Mirmiran:Seismic response of ultra-high performance concrete-filled frp tube columns," Journal of Earthquake Engineering, vol. 17, no. 1 (2013), pp.155-170.
DOI: 10.1080/13632469.2012.713560
Google Scholar
[6]
T. Yu, Y. M. Hu, and J. G. Teng: FRP-confined circular concrete-filled steel tubular columns under cyclic axial compression, Journal of Constructional Steel Research, vol. 94 (2014), pp.33-48.
DOI: 10.1016/j.jcsr.2013.11.003
Google Scholar
[7]
T. Ozbakkaloglu, T. Vincent: Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high-strength concrete, Composites Part B: Engineering, vol. 50 (2013), pp.413-428.
DOI: 10.1016/j.compositesb.2013.02.017
Google Scholar
[8]
Z. H. Wang, X. L. Du, J. D. Zhan, et al: Experimental study on the seismic behavior of beam-column joints strengthened with AFRP sheets. Journal of Beijing University of Technology, vol. 35, no. 1(2009), pp.30-34.
Google Scholar
[9]
U. Tiwari, K. Thyagarajan, and M. R. Shenoy: Strain and temperature discrimination technique by use of A FBG written in erbium doped fiber, Optik, vol. 125, no. 1(2014), pp.235-237.
DOI: 10.1016/j.ijleo.2013.06.067
Google Scholar
[10]
R. Maaskant, T. Alavie, R. M. Measures, et al: Fiber-optic Bragg Grating Sensors for Bridge Monitoring, Cement and Concrete Composites, vol. 19, no. 1(1997), pp.21-33.
DOI: 10.1016/s0958-9465(96)00040-6
Google Scholar
[11]
X. M. Jin, Y. L. Du, B. C. Sun, et al: Research on the FBG stress automatic monitoring system of prestressed reinforcement based on the virtual instrument technology, Structural Health Monitoring and Intelligent Infrastructure, London: Taylor & Francis Group (2006), pp.435-439.
Google Scholar
[12]
J. Teng, H. J. Liu: Compensation technique for the structural health monitoring system, Structural Health Monitoring and Intelligent Infrastructure, London: Taylor & Francis Group (2006), pp.585-590.
Google Scholar