[1]
W. Alzaher, J. Shaw, R. Al-Kassas, Gastroretentive Formulations for Improving Oral Bioavailability of Drugs-Focus on Microspheres and their Production, Current Drug Delivery 13(5) (2016) 646-661.
DOI: 10.2174/1567201812666151012113357
Google Scholar
[2]
S. Wu, Z. Zhou, L. Xu, B. Su, Q. Fang, Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis, Biosensors & Bioelectronics 53 (2014) 148-153.
DOI: 10.1016/j.bios.2013.09.042
Google Scholar
[3]
A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology, Angewandte Chemie-International Edition 49(34) (2010) 5846-5868.
DOI: 10.1002/anie.200906653
Google Scholar
[4]
Q. Yang, G. Owusu-Ababio, Biodegradable progesterone microsphere delivery system for osteoporosis therapy, Drug Development and Industrial Pharmacy 26(1) (2000) 61-70.
DOI: 10.1081/ddc-100100328
Google Scholar
[5]
I. Schrauwen, M. Sommen, J.J. Corneveaux, R.A. Reiman, N.J. Hackett, C. Claes, K. Claes, M. Bitner-Glindzicz, P. Coucke, G. Van Camp, M.J. Huentelman, A sensitive and specific diagnostic test for hearing loss using a microdroplet PCR-based approach and next generation sequencing, American Journal of Medical Genetics Part A 161A(1) (2013) 145-152.
DOI: 10.1002/ajmg.a.35737
Google Scholar
[6]
P.B. O'Donnell, J.W. McGinity, Preparation of microspheres by the solvent evaporation technique, Advanced Drug Delivery Reviews 28(1) (1997) 25-42.
DOI: 10.1016/s0169-409x(97)00049-5
Google Scholar
[7]
L. Francis, D. Meng, J.C. Knowles, I. Roy, A.R. Boccaccini, Multi-functional P(3HB) microsphere/45S5 Bioglass (R)-based composite scaffolds for bone tissue engineering, Acta Biomaterialia 6(7) (2010) 2773-2786.
DOI: 10.1016/j.actbio.2009.12.054
Google Scholar
[8]
C.X. Jiang, X. Li, F. Yan, Z.H. Wang, Q.F. Jin, F.Y. Cai, M. Qian, X. Liu, L.J. Zhang, H.R. Zheng, Microfluidic-assisted formation of multifunctional monodisperse microbubbles for diagnostics and therapeutics, Micro & Nano Letters 6(6) (2011) 417-421.
DOI: 10.1049/mnl.2011.0141
Google Scholar
[9]
A.R. Abate, D.A. Weitz, High-Order Multiple Emulsions Formed in Poly(dimethylsiloxane) Microfluidics, Small 5(18) (2009) 2030-2032.
DOI: 10.1002/smll.200900569
Google Scholar
[10]
M. Chabert, J.-L. Viovy, Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells, Proceedings of the National Academy of Sciences of the United States of America 105(9) (2008) 3191-3196.
DOI: 10.1073/pnas.0708321105
Google Scholar
[11]
S. van Loo, S. Stoukatch, M. Kraft, T. Gilet, Droplet formation by squeezing in a microfluidic cross-junction, Microfluidics and Nanofluidics 20(10) (2016).
DOI: 10.1007/s10404-016-1807-1
Google Scholar
[12]
E. Chiarello, A. Gupta, G. Mistura, M. Sbragaglia, M. Pierno, Droplet breakup driven by shear thinning solutions in a microfluidic T-junction, Physical Review Fluids 2(12) (2017).
DOI: 10.1103/physrevfluids.2.123602
Google Scholar
[13]
T. Yue, M. Nakajima, M. Takeuchi, Q. Huang, T. Fukuda, Construction of Vascular-like Microtubes via Fluidic Axis-translation Self-assembly based on Multiple Hydrogels, 2014 Ieee/Rsj International Conference on Intelligent Robots and Systems2014, p.803-+.
DOI: 10.1109/iros.2014.6942651
Google Scholar
[14]
M.Y. Chiang, Y.W. Hsu, H.Y. Hsieh, S.Y. Chen, S.K. Fan, Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels, Science Advances 2(10) (2016).
DOI: 10.1126/sciadv.1600964
Google Scholar
[15]
X. Zhao, S. Liu, L. Yildirimer, H. Zhao, R. Ding, H. Wang, W. Cui, D. Weitz, Injectable Stem Cell-Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs, Advanced Functional Materials 26(17) (2016) 2809-2819.
DOI: 10.1002/adfm.201504943
Google Scholar
[16]
X. Zhao, Q. Lang, L. Yildirimer, Z.Y. Lin, W. Cui, N. Annabi, K.W. Ng, M.R. Dokmeci, A.M. Ghaemmaghami, A. Khademhosseini, Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering, Advanced Healthcare Materials 5(1) (2016) 108-118.
DOI: 10.1002/adhm.201500005
Google Scholar
[17]
K. Yue, G. Trujillo-de Santiago, M. Moises Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels, Biomaterials 73 (2015) 254-271.
DOI: 10.1016/j.biomaterials.2015.08.045
Google Scholar
[18]
W. Jiang, M. Li, Z. Chen, K.W. Leong, Cell-laden microfluidic microgels for tissue regeneration, Lab on a Chip 16(23) (2016) 4482-4506.
DOI: 10.1039/c6lc01193d
Google Scholar
[19]
C. Cha, J. Oh, K. Kim, Y. Qiu, M. Joh, S.R. Shin, X. Wang, G. Camci-Unal, K.-t. Wan, R. Liao, A. Khademhosseini, Microfluidics-Assisted Fabrication of Gelatin-Silica Core-Shell Microgels for Injectable Tissue Constructs, Biomacromolecules 15(1) (2014) 283-290.
DOI: 10.1021/bm401533y
Google Scholar
[20]
A. Baki, C.V. Rahman, L.J. White, D.J. Scurr, O. Qutachi, K.M. Shakesheff, Surface modification of PDLLGA microspheres with gelatine methacrylate: Evaluation of adsorption, entrapment, and oxygen plasma treatment approaches, Acta Biomaterialia 53 (2017) 450-459.
DOI: 10.1016/j.actbio.2017.01.042
Google Scholar
[21]
C. Luan, P. Liu, R. Chen, B. Chen, Hydrogel based 3D carriers in the application of stem cell therapy by direct injection, Nanotechnology Reviews 6(5) (2017) 435-448.
DOI: 10.1515/ntrev-2017-0115
Google Scholar
[22]
F. Fu, L. Shang, F. Zheng, Z. Chen, H. Wang, J. Wang, Z. Gu, Y. Zhao, Cells Cultured on Core-Shell Photonic Crystal Barcodes for Drug Screening, Acs Applied Materials & Interfaces 8(22) (2016) 13840-13848.
DOI: 10.1021/acsami.6b04966
Google Scholar
[23]
L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, H. Zheng, Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves, Applied Physics Letters 100(17) (2012).
DOI: 10.1063/1.4704922
Google Scholar
[24]
J.G. Ortega-Mendoza, J.A. Sarabia-Alonso, P. Zaca-Moran, A. Padilla-Vivanco, C. Toxqui-Quitl, I. Rivas-Cambero, J. Ramirez-Ramirez, S.A. Torres-Hurtado, R. Ramos-Garcia, Marangoni force-driven manipulation of photothermally-induced microbubbles, Optics Express 26(6) (2018) 6653-6662.
DOI: 10.1364/oe.26.006653
Google Scholar
[25]
J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, A. Khademhosseini, Cell-laden microengineered gelatin methacrylate hydrogels, Biomaterials 31(21) (2010) 5536-5544.
DOI: 10.1016/j.biomaterials.2010.03.064
Google Scholar
[26]
D. Bodas, C. Khan-Malek, Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments, Microelectronic Engineering 83(4-9) (2006) 1277-1279.
DOI: 10.1016/j.mee.2006.01.195
Google Scholar
[27]
M.J Zhang, W. Wang, R. Xie, X.J. Ju, L. Liu, Y.Y Gu, Y.L. Chu, Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature, Soft Matter 9(16) (2013) 4150-4159.
DOI: 10.1039/c3sm00066d
Google Scholar