GelMa Microbubbles Prepared in Microfluidics as Suitable Cell Carriers

Article Preview

Abstract:

Microfluidics has great control over the size and uniformity of microspheres, which has been widely used in fabrication of different types of microspheres such as core-shell microbubbles. Gelatin Methacrylate (GelMa) as a biodegradable material that is closely resemble to native extracellular matrix (ECM). Photocrosslinked GelMa microspheres have gained numerous concerns in biomedical applications especially in three-dimensional cell culture and tissue engineering. In this article, we presented a suitable core-shell cell carrier based on biocompatible GelMa microbubbles. Highly monodispersed microbubbles were fabricated using a non-planar flow focusing microfluidic device. Both intact and collapsed microbubbles morphology were characterized through scanning electron microscopy (SEM), where clear hollow structures were found resulting from the gas core collapsing during the manipulation process. Furthermore, human umbilical vein endothelial cells (HUVEC) were seeded in the existence of microbubbles. Cells adhesion, migration and proliferation were observed in one week. It was notable that cells maintained high level of cell viability throughout the experiment. GelMa microbubble surface was also covered with cells, which became a facile carrier for cell culturing and targeted cell delivery.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-58

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Alzaher, J. Shaw, R. Al-Kassas, Gastroretentive Formulations for Improving Oral Bioavailability of Drugs-Focus on Microspheres and their Production, Current Drug Delivery 13(5) (2016) 646-661.

DOI: 10.2174/1567201812666151012113357

Google Scholar

[2] S. Wu, Z. Zhou, L. Xu, B. Su, Q. Fang, Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis, Biosensors & Bioelectronics 53 (2014) 148-153.

DOI: 10.1016/j.bios.2013.09.042

Google Scholar

[3] A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology, Angewandte Chemie-International Edition 49(34) (2010) 5846-5868.

DOI: 10.1002/anie.200906653

Google Scholar

[4] Q. Yang, G. Owusu-Ababio, Biodegradable progesterone microsphere delivery system for osteoporosis therapy, Drug Development and Industrial Pharmacy 26(1) (2000) 61-70.

DOI: 10.1081/ddc-100100328

Google Scholar

[5] I. Schrauwen, M. Sommen, J.J. Corneveaux, R.A. Reiman, N.J. Hackett, C. Claes, K. Claes, M. Bitner-Glindzicz, P. Coucke, G. Van Camp, M.J. Huentelman, A sensitive and specific diagnostic test for hearing loss using a microdroplet PCR-based approach and next generation sequencing, American Journal of Medical Genetics Part A 161A(1) (2013) 145-152.

DOI: 10.1002/ajmg.a.35737

Google Scholar

[6] P.B. O'Donnell, J.W. McGinity, Preparation of microspheres by the solvent evaporation technique, Advanced Drug Delivery Reviews 28(1) (1997) 25-42.

DOI: 10.1016/s0169-409x(97)00049-5

Google Scholar

[7] L. Francis, D. Meng, J.C. Knowles, I. Roy, A.R. Boccaccini, Multi-functional P(3HB) microsphere/45S5 Bioglass (R)-based composite scaffolds for bone tissue engineering, Acta Biomaterialia 6(7) (2010) 2773-2786.

DOI: 10.1016/j.actbio.2009.12.054

Google Scholar

[8] C.X. Jiang, X. Li, F. Yan, Z.H. Wang, Q.F. Jin, F.Y. Cai, M. Qian, X. Liu, L.J. Zhang, H.R. Zheng, Microfluidic-assisted formation of multifunctional monodisperse microbubbles for diagnostics and therapeutics, Micro & Nano Letters 6(6) (2011) 417-421.

DOI: 10.1049/mnl.2011.0141

Google Scholar

[9] A.R. Abate, D.A. Weitz, High-Order Multiple Emulsions Formed in Poly(dimethylsiloxane) Microfluidics, Small 5(18) (2009) 2030-2032.

DOI: 10.1002/smll.200900569

Google Scholar

[10] M. Chabert, J.-L. Viovy, Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells, Proceedings of the National Academy of Sciences of the United States of America 105(9) (2008) 3191-3196.

DOI: 10.1073/pnas.0708321105

Google Scholar

[11] S. van Loo, S. Stoukatch, M. Kraft, T. Gilet, Droplet formation by squeezing in a microfluidic cross-junction, Microfluidics and Nanofluidics 20(10) (2016).

DOI: 10.1007/s10404-016-1807-1

Google Scholar

[12] E. Chiarello, A. Gupta, G. Mistura, M. Sbragaglia, M. Pierno, Droplet breakup driven by shear thinning solutions in a microfluidic T-junction, Physical Review Fluids 2(12) (2017).

DOI: 10.1103/physrevfluids.2.123602

Google Scholar

[13] T. Yue, M. Nakajima, M. Takeuchi, Q. Huang, T. Fukuda, Construction of Vascular-like Microtubes via Fluidic Axis-translation Self-assembly based on Multiple Hydrogels, 2014 Ieee/Rsj International Conference on Intelligent Robots and Systems2014, p.803-+.

DOI: 10.1109/iros.2014.6942651

Google Scholar

[14] M.Y. Chiang, Y.W. Hsu, H.Y. Hsieh, S.Y. Chen, S.K. Fan, Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels, Science Advances 2(10) (2016).

DOI: 10.1126/sciadv.1600964

Google Scholar

[15] X. Zhao, S. Liu, L. Yildirimer, H. Zhao, R. Ding, H. Wang, W. Cui, D. Weitz, Injectable Stem Cell-Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs, Advanced Functional Materials 26(17) (2016) 2809-2819.

DOI: 10.1002/adfm.201504943

Google Scholar

[16] X. Zhao, Q. Lang, L. Yildirimer, Z.Y. Lin, W. Cui, N. Annabi, K.W. Ng, M.R. Dokmeci, A.M. Ghaemmaghami, A. Khademhosseini, Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering, Advanced Healthcare Materials 5(1) (2016) 108-118.

DOI: 10.1002/adhm.201500005

Google Scholar

[17] K. Yue, G. Trujillo-de Santiago, M. Moises Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels, Biomaterials 73 (2015) 254-271.

DOI: 10.1016/j.biomaterials.2015.08.045

Google Scholar

[18] W. Jiang, M. Li, Z. Chen, K.W. Leong, Cell-laden microfluidic microgels for tissue regeneration, Lab on a Chip 16(23) (2016) 4482-4506.

DOI: 10.1039/c6lc01193d

Google Scholar

[19] C. Cha, J. Oh, K. Kim, Y. Qiu, M. Joh, S.R. Shin, X. Wang, G. Camci-Unal, K.-t. Wan, R. Liao, A. Khademhosseini, Microfluidics-Assisted Fabrication of Gelatin-Silica Core-Shell Microgels for Injectable Tissue Constructs, Biomacromolecules 15(1) (2014) 283-290.

DOI: 10.1021/bm401533y

Google Scholar

[20] A. Baki, C.V. Rahman, L.J. White, D.J. Scurr, O. Qutachi, K.M. Shakesheff, Surface modification of PDLLGA microspheres with gelatine methacrylate: Evaluation of adsorption, entrapment, and oxygen plasma treatment approaches, Acta Biomaterialia 53 (2017) 450-459.

DOI: 10.1016/j.actbio.2017.01.042

Google Scholar

[21] C. Luan, P. Liu, R. Chen, B. Chen, Hydrogel based 3D carriers in the application of stem cell therapy by direct injection, Nanotechnology Reviews 6(5) (2017) 435-448.

DOI: 10.1515/ntrev-2017-0115

Google Scholar

[22] F. Fu, L. Shang, F. Zheng, Z. Chen, H. Wang, J. Wang, Z. Gu, Y. Zhao, Cells Cultured on Core-Shell Photonic Crystal Barcodes for Drug Screening, Acs Applied Materials & Interfaces 8(22) (2016) 13840-13848.

DOI: 10.1021/acsami.6b04966

Google Scholar

[23] L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, H. Zheng, Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves, Applied Physics Letters 100(17) (2012).

DOI: 10.1063/1.4704922

Google Scholar

[24] J.G. Ortega-Mendoza, J.A. Sarabia-Alonso, P. Zaca-Moran, A. Padilla-Vivanco, C. Toxqui-Quitl, I. Rivas-Cambero, J. Ramirez-Ramirez, S.A. Torres-Hurtado, R. Ramos-Garcia, Marangoni force-driven manipulation of photothermally-induced microbubbles, Optics Express 26(6) (2018) 6653-6662.

DOI: 10.1364/oe.26.006653

Google Scholar

[25] J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, A. Khademhosseini, Cell-laden microengineered gelatin methacrylate hydrogels, Biomaterials 31(21) (2010) 5536-5544.

DOI: 10.1016/j.biomaterials.2010.03.064

Google Scholar

[26] D. Bodas, C. Khan-Malek, Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments, Microelectronic Engineering 83(4-9) (2006) 1277-1279.

DOI: 10.1016/j.mee.2006.01.195

Google Scholar

[27] M.J Zhang, W. Wang, R. Xie, X.J. Ju, L. Liu, Y.Y Gu, Y.L. Chu, Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature, Soft Matter 9(16) (2013) 4150-4159.

DOI: 10.1039/c3sm00066d

Google Scholar